

NI 43-101 Technical Report

on the

Trek Property

Galore Creek Area, Liard Mining Division, Northwest British Columbia

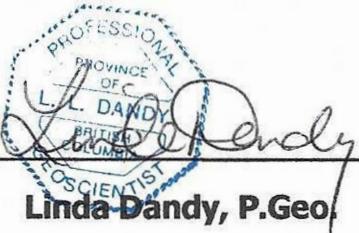
57° 01' 34" N / 131° 18' 00" W

360400 E, 6322650 N, UTM NAD 83, Zone 9

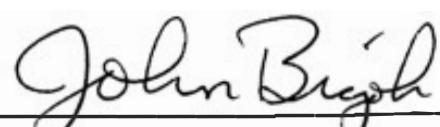
by

Linda Dandy, P.Geo. and John L. Biczok, P.Geo.

Report and Effective Date: January 20, 2026


Prepared for:

Romios Gold Resources Corp.


200 – 3310 South Service Road
Burlington, Ontario, Canada L7N 3M6

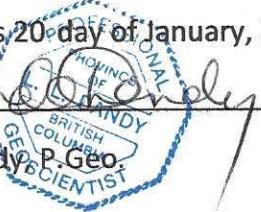
DATE AND SIGNATURE PAGE

Effective Date: January 20, 2026

Author:
Linda Dandy, P.Geo.

Signing Date: January 20, 2026

Author:
John L. Biczok, P.Geo.


Signing Date: January 20, 2026

L. DANDY, CERTIFICATE OF AUTHOR

- 1) I, Linda LaVaughn Dandy, of 4900 Warm Bay Road, Atlin, British Columbia, self-employed as a consulting geologist, co-authored and am responsible for all sections of this report titled "*NI 43-101 Technical Report on the Trek Property*" dated January 20, 2026.
- 2) I am Registered with the Association of Professional Engineers and Geoscientists of British Columbia (Registration #19236 and Permit to Practice #1004352).
- 3) I graduated from the University of British Columbia, Canada, with a B.Sc. in Geology in 1981.
- 4) I have practiced my profession continuously since graduation, consulting in exploration and development work to junior and major mining companies and government on a variety of mineral deposit types in locations including Canada, USA, Mexico, China, S. Africa, Australia. The majority of my professional work has concentrated on precious metal projects in the North American Cordillera.
- 5) I visited the Trek Property on August 25, 2025.
- 6) I have had no previous involvement with the Property until contracted to write this Technical Report.
- 7) I am independent of Romios Gold Resources Corp. and the DEM Property as described in Section 1.5 of NI 43-101. I have not received, nor do I expect to receive, any interest (direct, indirect, or contingent), in the property described herein or Romios for the services rendered in the preparation of this Report.
- 8) I have read National Instrument 43-101, Companion Policy 43-101CP and Form 43-101F1 and, by reason of education and past relevant work experience, I fulfill the requirements to be an independent "Qualified Person" for the purposes of NI 43-101. This Technical Report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1.
- 9) As of the date of this certificate, to the best of my knowledge, this Technical Report contains all scientific and technical information that is required to be disclosed in order to make this Technical Report not misleading.

Signed this 20 day of January, 2026 in Atlin, British Columbia

Linda Dandy

J.L. BICZOK, CERTIFICATE OF AUTHOR

I, John Biczok, of 6629 Woodstream Drive in the city of Greely, Ontario, do hereby swear and affirm that:

1. I am a Professional Geologist registered in good standing with Professional Geoscientists Ontario (since 2007).
2. I have an Honours B.Sc. degree in Geology from Lakehead University in Thunder Bay, ON.
3. I was employed as an exploration geologist by several major mining companies on a full-time basis from 1979 to 2003 throughout central and western Canada and much of India. From 2003 to March 2015 I was employed as a geologist at the Musselwhite gold mine, initially as a project geologist, followed by a senior exploration geologist position and then as senior research geologist. Since August 2016 I have been employed as a consultant on a part-time basis by Romios Gold Resources Inc.
4. I currently serve as Vice President of Exploration for Romios Gold Resources Inc. I personally took part in and supervised the geological work in the period 2018-2025 described in this report.
5. My only financial interest in Romios Gold Resources Inc. as of this date is a number of vested and pending stock options and a modest share position. I have no personal interest in the claims described herein.
6. I have read National Instrument 43-101, Companion Policy 43-101CP and Form 43-101F1 and, by reason of education and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101, however, since I serve as Vice President of Exploration for Romios Gold Resources I am not considered Independent. This Technical Report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1.
7. As of the date of this certificate, to the best of my knowledge, this Technical Report contains all scientific and technical information that is required to be disclosed in order to make this Technical Report not misleading.

Signed:

Date: January 20, 2026

TABLE OF CONTENTS

L. DANDY, CERTIFICATE OF AUTHOR.....	ii
J.L. BICZOK, CERTIFICATE OF AUTHOR	iii
1 SUMMARY.....	1
2 INTRODUCTION.....	4
2.1 Introduction and Terms of Reference.....	4
2.2 Site Visit.....	4
2.3 Sources of Information	5
3 RELIANCE ON OTHER EXPERTS.....	7
4 PROPERTY DESCRIPTION AND LOCATION.....	7
4.1 Location.....	7
4.2 Property Holdings and Underlying Agreements	7
4.3 Permits and Community Agreements.....	10
4.4 Environmental Liabilities.....	11
5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	11
5.1 Access and Nearest Population Centres	11
5.2 Climate	13
5.3 Local Resources and Infrastructure	13
5.4 Physiography - Topography, Elevation and Vegetation.....	14
6 HISTORY	14
6.1 Property Ownership.....	14
6.2 Previous Exploration	17
6.2.1 BIK Syndicate and Kennco 1957-1960.....	17
6.2.2 Consolidated Silver Standard Mines Ltd. – late 1960s to 1970	20
6.2.3 Teck (under option from Silver Standard) – 1980 to 1981	20
6.2.4 Lorica Resources (under option from Pass Lake) – 1988 to 1993.....	20
6.2.5 Warner Ventures (under option from Lorica and Pass Lake) - 1993	21
6.3 Exploration by Romios 2006-2025	21
6.4 Mineral Resource Estimates	21
6.5 Mineral Production	22
7 GEOLOGICAL SETTING AND MINERALIZATION	22
7.1 Historical Mapping	22

7.2	Regional Geology	22
7.2.1	Paleozoic: Stikine Assemblage	23
7.2.2	Lower and Middle Triassic: Stuhini Group	23
7.2.3	Intrusive Rocks	24
7.2.4	Structure	27
7.2.5	Metamorphism	27
7.3	Property Geology	27
7.4	Geology Of The Trek North Zone To Tundra Zone Area	28
7.4.1	Fault Structures.....	29
7.4.1.1	Trek Fault (a.k.a. the North Zone Footwall Fault).....	29
7.4.1.2	Tangle Zone Fault.....	34
7.4.1.3	Other Faults.....	34
7.4.2	Fabric.....	34
7.5	Trek South Geology.....	35
7.5.1	Trek South Lithologies.....	35
7.5.2	Trek South Structure	41
7.6	Mineralization	41
7.6.1	Trek North Zone (including the Northeast and Upper Northeast subzones)	42
7.6.1.1	Alteration	44
7.6.2	Trek South Mineralized Zone	45
7.6.2.1	Quartz-Pyrite Stockwork	46
7.6.2.2	Alteration	49
7.6.2.3	Northern Skarns	55
7.6.3	Lower North Zone – Porphyry Target	56
7.6.4	Tangle Zone Alkalic Porphyry (combined West and Wall subzones)	56
7.6.5	Tundra Zone (former Heel, Grey, Arch, and Pickle Zones) – Porphyry Target.....	57
7.6.6	Silver Standard Zone – Porphyry(?)	59
7.6.7	DCP Zone – Porphyry(?)	60
7.6.8	Gully Zone – Sulphide Veins.....	61
7.6.9	Tomb Zone - Sulphide Veins	61
7.6.10	Toe Zone – Massive Sulphides	62
7.6.11	East Zone – Quartz Sulphide Veins	66
8	DEPOSIT TYPES	66

8.1	Alkalic Porphyry Cu-Au-Ag Deposits	66
8.2	Skarns.....	70
8.3	Eskay Creek and/or Kuroko-type Massive Sulphide Deposits	72
8.3.1	Eskay Creek Deposit Type	72
8.3.2	Kuroko Type VMS.....	74
9	EXPLORATION	75
9.1	Previous Operators Exploration Work	75
9.2	Romios' Exploration Work	75
9.2.1	2006 Exploration	75
9.2.2	2007 Exploration	76
9.2.3	2008 Exploration	76
9.2.4	2009 Exploration	77
9.2.5	2010 Exploration	77
9.2.6	2011 Exploration	80
9.2.7	2012-2017 Exploration.....	81
9.2.8	2018 Exploration	83
9.2.9	2019 Exploration	83
9.2.10	2020 Exploration	83
9.2.11	2021 Exploration	83
9.2.12	2022 Exploration	84
9.2.13	2023 Exploration	84
9.2.14	2025 Exploration	85
9.3	Geological Mapping Summary	85
9.4	Soil Geochemistry Summary	86
9.5	Rock Sampling Summary	86
9.6	Geophysics Summary	86
10	DRILLING	88
11	SAMPLE PREPARATION, ANALYSES AND SECURITY	94
11.1	Rock Samples	94
11.1.1	Methodology and Approach	94
11.2	Core Sampling 2006-2011.....	95
11.3	Core Storage 2008-2011	96
11.4	Soil Sampling	97

11.5	Security	97
11.6	Analytical Procedures	98
11.7	Quality Control Procedures and Results	99
11.7.1	Blanks	99
11.7.2	Standards	99
11.7.3	Duplicate Analyses	104
12	DATA VERIFICATION.....	105
13	MINERAL PROCESSING AND METALLURGICAL TESTING.....	106
14	MINERAL RESOURCE ESTIMATES	106
15	MINERAL RESERVE ESTIMATES	107
16	MINING METHODS.....	107
17	RECOVERY METHODS.....	107
18	PROJECT INFRASTRUCTURE	107
19	MARKET STUDIES AND CONTRACTS	108
20	ENVIRONMENTAL STUDIES, PERMITTING and SOCIAL OR COMMUNITY IMPACT	108
20.1	Mines Act Permit.....	108
20.2	Archeological and Environmental Studies	108
20.2.1	2012 Studies.....	108
20.2.2	2025-26 Studies	109
20.2.2.1	Wildlife Management Plan.....	109
20.2.2.2	Exploration Reclamation and Closure Plan	109
20.3	First Nations Engagement	110
21	CAPITAL AND OPERATING COSTS.....	110
22	ECONOMIC ANALYSIS.....	110
23	ADJACENT PROPERTIES	110
23.1	Galore Creek Alkalic Porphyry Deposit(s)	112
23.2	Copper Canyon.....	113
23.3	Schaft Creek	113
23.4	Newmont Lake – Enduro Metals.....	113
23.5	Eskay Creek	114
24	OTHER RELEVANT DATA AND INFORMATION	115
25	INTERPRETATION AND CONCLUSIONS.....	115
25.1	Trek South Zone	115

25.1.1	Summary	115
25.1.2	Mineralization style and distribution.....	115
25.1.3	Genetic Model for Trek South.....	116
25.1.4	Risks and Uncertainties with the Model for the Trek South Zone	116
25.2	Trek North Zone	117
25.2.1	Summary	117
25.2.2	Mineralization style and distribution.....	117
25.2.3	Genetic Model.....	118
25.2.4	Risks and Uncertainties with the Model for the Trek North Zone	118
25.3	TOE Zone	119
25.3.1	Mineralization style and distribution.....	119
25.3.2	Genetic Model.....	119
25.3.3	Risks and Uncertainties Associated with Exploration of the Toe Zone.....	119
26	RECOMMENDATIONS.....	120
26.1	Phase One Work Program.....	120
26.1.1	Geological Surveys	120
26.1.2	Geophysical Surveys.....	123
26.1.3	Trek South Drill Program.....	124
26.1.3.1	Considerations	125
26.1.3.2	Phase 1 Drill Program – Trek South	126
26.2	Phase Two Drill Program.....	129
26.3	Budget.....	131
27	LIST OF REFERENCES	132

LIST OF FIGURES

Figure 1:	Regional location map of the Trek project, northwestern British Columbia.....	6
Figure 2:	District location map of the Trek claims area.....	8
Figure 3:	Trek Project claim map	9
Figure 4:	Infrastructure in the Trek claims area	12
Figure 5:	Topographic map of the Trek claims	15
Figure 6:	Map of the mineralized prospects in the Trek claims area	19
Figure 7:	General geology of the Trek claims and surrounding area	24
Figure 8:	Major geological units in the TREK area, after BGCS digital geology map	30
Figure 9:	General geology of the Trek North to Tundra area	31

Figure 10: Map of the known faults in the Trek area	32
Figure 11: Trek North Drill Section 1050E-6700N)	33
Figure 12: General geology, alteration and veining map of the Trek South area as of 2023.....	36
Figure 13: Romios' compilation of the 2010 IP-MT survey results and drilling with modelled mineralized shells.....	44
Figure 14: General geology of the southern Trek claims and 2020 hyperspectral anomalies	46
Figure 15: Rose diagram stereonets of Qtz-Py vein orientations, Trek South	49
Figure 16: Extent of epidote alteration at Trek South	50
Figure 17: Historic showings and geology of the Tundra Zone area	58
Figure 18: Romios' assay results from the TOE Zone in 2022.....	65
Figure 19: Porphyry Cu-Au-Ag deposit types of the northern Golden Triangle	68
Figure 20: Alteration patterns of calc-alkalic porphyry deposits	69
Figure 21: Alkalic porphyry alteration model	69
Figure 22: Simplified drawing of a skarn-porphyry system	70
Figure 23: Simplified stratigraphy of the Eskay Creek deposit.....	73
Figure 24: Cross-section diagram of a Kuroko VMS deposit	74
Figure 25: 2010 TDEM Survey Lines overlain on 2007 Aeromagnetic Map	79
Figure 26: Geosoft 3D view of the Trek North MT model with interpretation and DDH	80
Figure 27: Tangle Zone compilation map of Cu-in-soil results overlying IP and MT results	81
Figure 28: Tangle Zone copper-in-soil results.....	82
Figure 29: Compilation map of IP survey anomalies overlain on RTP aeromagnetic map.....	88
Figure 30: Image of the IP chargeability high underlying the Trek South area	89
Figure 31: Trek North Diamond Drill Hole Location Map	91
Figure 32: Comparison of 2009-2010 duplicate sample results from Desautels (2011)	105
Figure 33: Comparison of 2011 duplicate copper and gold analysis of drill core samples	105
Figure 34: Major prospects and mineral deposits in the Trek project region	111
Figure 35: Phase One Target areas outside of the Trek South zone	121
Figure 36: Compilation map of Trek South targets with proposed IP survey lines	124
Figure 37: Map of the proposed Phase One diamond drill holes on aeromagnetic base map..	126
Figure 38: Proposed diamond drill holes plotted on IP chargeability inversion plots	128
Figure 39: Map of the proposed Phase Two diamond drill holes on aeromagnetic base map..	129

LIST OF TABLES

Table 1: Trek claims held by Romios' wholly owned subsidiary, McLymont Mines Inc.	10
Table 2: Summary of pertinent exploration programs in the Trek claims area pre-Romios.....	18
Table 3: Geological unit legend to accompany the regional geology map (Figure 7)	25
Table 4: Diamond Drill Hole Locations.....	90
Table 5: Significant Diamond Drill Hole Intercepts.....	93
Table 6: Certified standard reference material used by Romios from 2008-2010.....	101
Table 7: Summary of copper standards analytical results, 2008-2010	101

Table 8: Summary of gold standards assay results 2008-2010	101
Table 9: Certified Values for CRMs used in the 2011 drill program	102
Table 10: Range and mean results of the three CRM standards used in 2011 drill program	102
Table 11: Statistical summary of results of the CRM standards used in 2011	103
Table 12: Details of the proposed Phase One diamond drill holes	127
Table 13: Details of the proposed Phase Two diamond drill holes	130
Table 14: Estimated budget for Phase 1 and 2 programs	131

LIST OF PHOTOS

Photo 1: Aerial view of Trek South, looking southeast.....	16
Photo 2: View of the Trek North area, looking north	16
Photo 3: Contact between Fd-Bt porphyritic dyke and epidotized volcanics	39
Photo 4: Quartz-pyrite vein cutting epidote band	47
Photo 5: Fairly typical quartz-pyrite stockwork.....	47
Photo 6: Semi-massive pyrite vein, only minor quartz.....	47
Photo 7: Chlorite-rich portion of a Qtz-Py vein with bleached, pyritized margins	47
Photo 8: Relatively typical area of vein and patchy epidote alteration	51
Photo 9: Preferential epidote replacement of fragments in an andesitic breccia	51
Photo 10: Spherical masses of massive epidote alteration at "SW Peak".....	52
Photo 11: Thick bands of massive epidote alteration up to 2 m long, "SW Peak".....	52
Photo 12: Pervasive biotite alteration with irregular zones of strong Bt and/or Mt alteration ..	53
Photo 13: Well developed, relatively thick garnet-epidote skarn vein	54
Photo 14: Garnet-epidote(?) skarnified boulder and close-up of a skarn patch.....	54
Photo 15: Aerial view of the main TOE Zone outcrop, looking southeast	63
Photo 16: TOE Zone recent exposures	64
Photo 17: Typical mineralized exhalite horizon within the basaltic pile, TOE Zone.....	65

1 SUMMARY

Romios Gold Resources Inc. (“Romios”), through its wholly owned subsidiary McLymont Mines Inc., is the owner of a block of 24 mineral claims referred to as the Trek Property (“Trek” or “the Property”), in the “Golden Triangle” of northwestern British Columbia, Canada (Figure 1). The Trek property covers a known alkalic porphyry Cu-Au-Ag occurrence at Trek North and the recently discovered, prospective Trek South porphyry-skarn system, in addition to numerous other prospects with various mineralization styles. The claims cover an area of 6,694.1 ha and are located 7.6 km southeast of the giant Galore Creek alkalic porphyry Cu-Au-Ag deposits owned by the Galore Creek Mining Corp. (“GCMC”), a joint venture between Teck Resources Ltd. and Newmont Corp. (Figure 2). Five Trek Property core claims were originally staked by the Galore Creek Staking Syndicate 2003 (the “Syndicate”) in 2005 and optioned to Romios in 2006 under an agreement that gave the Syndicate a 5 km Area of Influence around the core claims. Romios has fulfilled all of its obligations under the option agreement and is now the 100% owner of the 24 Trek claims, with the Syndicate holding a 2% Net Smelter Return (“NSR”) on all of the claims.

As yet there is no known economic mineral deposit on the Trek claims and the work described herein is exploratory in nature. The purpose of this report is to summarise the work conducted on the Trek claims prior to 2011, which was presented in a previous Technical Report on the Trek Property by P. Desautels (2011), update that presentation with the work done in 2011, and then present the work conducted primarily on the Trek South claims from 2018 to 2025. Neither author was involved with the work on the property prior to 2018 but the co-author (John Biczok, P.Geo.) directed and participated in the exploration programs from 2018 to the present. The Trek South claims and the mineral prospects thereon are the main focus of Romios’ current exploration efforts on the property.

The Trek property is centred at approximately 57°01'34" N/131°18'00" W on NTS map sheets 104G/03 and 104B/14. It is 62 km west of paved provincial Highway 37 and the 287 kV powerline that parallels the highway in that area. Access to the property in 2011 and earlier years was largely by helicopter from the Bob Quinn gravel airstrip alongside Hwy 37, or from one of several seasonal camps established by various operators on the Eskay Creek mine road or the Northwest Hydro / Iskut River road 50 to 58 km to the southeast. GCMC’s mine and mill access road from Highway 37 to the proposed Galore Creek mill site is cleared and partially constructed from the highway to the site and beyond to the eastern edge of the Trek claims and from there it is partially cleared a further ~30 km west of the Trek claims as far as a proposed tunnel entrance into the Galore Creek valley. As of the date of this report, if GCMC proceeds with development of the Galore Creek deposits, their current plan is to bore a tunnel from the area immediately east of the Trek claims heading northwest to the deposits and to build the mill complex at Round Lake, 12 km ENE of the Trek claims (Figure 2).

The property is underlain largely by upper Triassic Stuhini Group fine-grained clastic sediments and volcanics, primarily andesitic and lesser basaltic varieties, with locally predominant siltstone and limestone. Of particular interest are the unusual pseudoleucite bearing alkalic volcanics and related intrusives found in outcrop immediately NW of the Trek North Zone; these volcanics are a key component of the geology and mineralizing event at Galore Creek. The Stuhini volcanic and intercalated sedimentary strata are bounded to the east by Permian limestone and conglomerate of the Stikine Assemblage and to the west by a thick sequence of Stuhini Group argillite and wacke. A small number of late Triassic granodiorite to diorite plutons typically about 200 m in diameter intrude the stratigraphy on the Trek claims and two large plutons up to 1 km across are found on GCMC's SPHAL claims immediately east of the Tangle Zone. Numerous monzonite dykes assumed to be late Triassic-early Jurassic were noted in the drilling at the Trek North zone. Two Eocene plutons, 0.6 and ~3 km across, intrude the southern half of the claims area.

The Trek property has been heavily explored by previous operators at various times in the past, primarily in the 1980s. Romios' completed extensive work in the period 2006-2011 when they acquired the property and conducted a major drilling, geological, geochemical and geophysical survey program focussed primarily on the Trek North prospect with lesser programs on the Tangle and Tundra zones. The Trek South area was subject to brief spotty exploration programs by Romios and various junior companies prior to 2021, the areal extent of which were very limited by glacial cover that has melted back substantially in recent years.

The feature of most interest identified by Romios' drilling programs is the Trek North Zone, a partially delineated porphyry Cu-Au-Ag system consisting of three shallow dipping, low grade porphyry-style mineralized envelopes extending northeastward into the mountainside from high-grade mineralized breccia pipes exposed in a cliff face and intersected by several nearby drill holes. A total of 36 drill holes comprising 15,035.7 m were drilled at Trek North and these outlined a mineralized zone at least 720 m long x 260 m wide (Desautels, 2011). The drill spacing was not sufficient to calculate a mineral resource estimate. One of the best drill intercepts was from the earliest hole, TRK-08-01, which intersected mineralized breccias for 46.6 m that graded 1.49% Cu, 0.77 g/t Au and 16.76 g/t Ag. The Trek North porphyry-style zone is still open downdip to the north and northeast and three additional targets remain – the roots of the high-grade exposed breccia pipes, the down-dip extension/source of a shallow-dipping, Cu-Ag rich breccia horizon, and a large magnetotelluric ("MT") geophysical anomaly below the limits of the past drilling. A thorough compilation, re-evaluation and re-modeling of the past drill results and other data is required to determine if these targets are geologically and economically valid drill targets.

The current focus of Romios' work and planned activities on the Trek property is the Trek South porphyry target, first definitively identified in 2021 in areas immediately outboard to the toe of the rapidly receding Trek South glacier, where a 1 km wide area of bare bedrock only revealed in recent times provides excellent exposures. This prospect consists of an approximately 1.6 x 1.0 km zone of intense, porphyry-style propylitic (epidote) alteration of the local Stuhini volcanics

overprinted by a numerous garnet-epidote skarn veins and bands, plus a network of quartz-pyrite veins, of which approximately one-half contain appreciable levels of Cu, Au and Ag mineralization with locally high values of Bi, Te, W and Mo. A 3-line Induced Polarization (IP) and 1-line MT geophysical survey conducted in 2022 outlined a very strong chargeability high (up to 40 mV/V), and coincident resistivity low, up to 500 m wide and greater than 850 m long, extending to a depth of 650 m based on the IP results and up to 2 km depth based on the MT results. The width of this large geophysical target widens out significantly at depths around 200 m and it overlaps a circular aeromagnetic high, thought to potentially reflect the potassically-altered core of a source intrusion, that also gains in strength at a depth of ~200 m. The northern end of the IP anomaly underlies a broad zone of outcropping copper-tungsten skarns situated some 200 to 300 m from the inferred buried source pluton. The IP anomaly beneath these skarns widens out significantly at depth, suggesting a transition into either a very broad skarn zone or porphyry style mineralization. An important discovery in terms of a source intrusion(s) was made in the 2025 summer program in the form of at least two feldspar-biotite porphyry dykes, newly exposed by glacial retreat, that cross-cut the propylitic alteration, and in one case, is then cut by mineralized quartz-pyrite veins. These cross-cutting relationships are taken as proof of a local intrusive event contemporaneous with the alteration and veining.

Trek South has never been drill tested. Due to the expanse of mineralization and alteration present, the authors conclude that it is a high-priority, porphyry Cu-Au-Ag target and associated Cu-W skarn system warranting a thorough drill program.

The recommended Phase One and Two drill programs and budgets are discussed briefly below and in greater detail in Section 26. In recognition of the limited seasonal drilling window at Trek, it is recommended that the Company be prepared to immediately advance from the proposed Phase One program into the Phase Two programs should Phase One be successful.

Trek South Phase One Drill Program:

Eight widely spaced angled diamond drill holes in two fences totalling 4,650 m of drilling are recommended for the Phase One drill program at Trek South. The associated budget is \$3.6 million inclusive of camp, aircraft, drilling etc. Seven line-kms of additional IP in the vicinity of Trek South and modelling of historical Trek North data has also been included in the budget. The Phase One holes are designed to test a) the combination of the circular aeromagnetic high and the coincident IP chargeability high/resistivity low, and b) the largest of all the IP anomalies, which underlies the northern skarns and may indicate a transition into a porphyry system at depth. All proposed Phase One holes are shown in plan view on Figure 37. Details of Phase One drill hole locations, azimuths, depths, targeting, etc. are listed in Table 12.

Trek South Phase Two Drill Program:

Contingent upon Phase One results, a total of eight additional widely spaced angled core holes totalling 4,600 m is recommended for Phase Two. The associated budget for this work is \$3.2

million, all-inclusive. These holes are designed to step back from, and step out to the east of, the Phase One drill sites. All proposed Phase 2 holes are shown in plan view on Figure 39. Details of Phase Two hole locations, azimuths, depths, targeting, etc. are listed in Table 13.

2 INTRODUCTION

2.1 Introduction and Terms of Reference

The Trek Property (“Trek” or “the property”) is comprised of a block of 24 mineral claims in the Galore Creek/Sphaler Creek area of northwestern British Columbia, Canada (Figure 1). The property’s key target is porphyry copper-gold-silver mineralization, although copper-tungsten skarns and gold-silver-copper-zinc bearing massive sulphide bands have also been identified. Romios Gold Resources Inc. (“Romios” or “the company”) has retained independent qualified person and lead author responsible for this report Ms. Linda Dandy, P.Geo., and Mr. John L. Biczok, P.Geo., a non-independent geologist who currently serves as Vice President of Exploration for Romios (“the authors”) to review and evaluate the geology, mineralization and exploration potential of the Trek Property. It is the authors’ understanding that Romios intends to complete a corporate reorganization and financing in support of which this Technical Report (the “Report”) shall be used.

This Report has been prepared in accordance with the requirements of National Instrument 43-101 *Standards of Disclosure for Mineral Properties*, Companion Policy 43-101CP and Form 43-101F1, to be a comprehensive review of the results of exploration activities on the Property to date and to provide recommendations for future work.

2.2 Site Visit

Ms. Dandy reviewed the historic and more recent exploration results, studied reports of nearby mineral occurrences and visited the site with Mr. Biczok on August 25, 2025, conducting a traverse across the main areas of interest on the key target Trek South, as well as an aerial inspection of Trek North, Toe and the nearby GCMC roadway and potential mill site. At Trek South, Ms. Dandy examined the outcrop geology and mineralization in the porphyry and skarn target areas and confirmed several marked rock sample stations.

Mr. Biczok has spent numerous days mapping the geology and sampling various showings on the Trek claims between 2018 and 2021 primarily in the Trek South and surrounding areas. In 2022, Mr. Biczok spent 7.5 days mapping the geology on Trek South and overseeing geophysical surveys (IP and MT) and undertook detailed chip sampling of the main skarn zones. In August 2025, Mr. Biczok completed several days of geological mapping and sampling of the Trek South target area.

The authors travelled to the property via Highway 37 to the Eskay Creek-Northwest Hydro road turnoff, 292 km north of Kitwanga or 398 km south of the junction with the Alaska Hwy. From the turnoff, a good all season gravel road accesses the Truffle camp about 50 km to the southwest. From the camp, property access is via helicopter for an additional 50 km northwest.

In preparation for the site visit the authors reviewed available project documents describing exploration work carried out to date on the Property by historical operators and, more recently, by Romios. Romios supplied all available reports and maps documenting the historic and recent geological, geochemical and geophysical work, and the 2008-2011 diamond drilling programs. The Property is considered an early-stage exploration project based on the limited exploration work completed to date.

2.3 Sources of Information

The authors have reviewed previous exploration activities on the Property, undertaken from 1964 to 2025, including assessment reports on file through the British Columbia Ministry of Mining and Critical Minerals ARIS (Assessment Report Indexing System) database.

This Report in part draws upon and references past work and reports by other qualified geologists and professional field personnel. Other non-project specific reports by qualified personnel have been referenced whenever possible. It is the authors' opinion that the work referred to was carried out in a workmanlike, professional manner, and can be relied upon. The information, conclusions, opinions and recommendations in this Report are based upon:

- information available to the authors at the time of preparation;
- assumptions, conditions and qualifications as set forth in this Report;
- data, reports and other information provided by Romios and other third party sources;
- published government reports and scientific papers.

Sources of information are detailed below and include available public domain information and private company data.

- Research of the Minfile data available for the area at <https://minfile.gov.bc.ca>.
- Research of mineral titles and claim locations at [Mineral Titles Online - Province of British Columbia \(gov.bc.ca\)](https://minerals.gov.bc.ca/mineral-titles) on December 13, 2025.
- Review of company reports and annual assessment reports filed with the government at [Assessment Reports - Province of British Columbia \(gov.bc.ca\)](https://minerals.gov.bc.ca/assessment-reports).
- Review of geological maps and reports completed by the BC Ministry of Mines Geological Survey Branch and the Geological Survey of Canada.
- Review of published scientific papers on the geology and mineral deposits of the region and on mineral deposit types.
- Site visit to the Property by the author Linda Dandy, P.Geo on August 25, 2025 and author John L. Biczok, P.Geo. between August 20 and September 2, 2025.

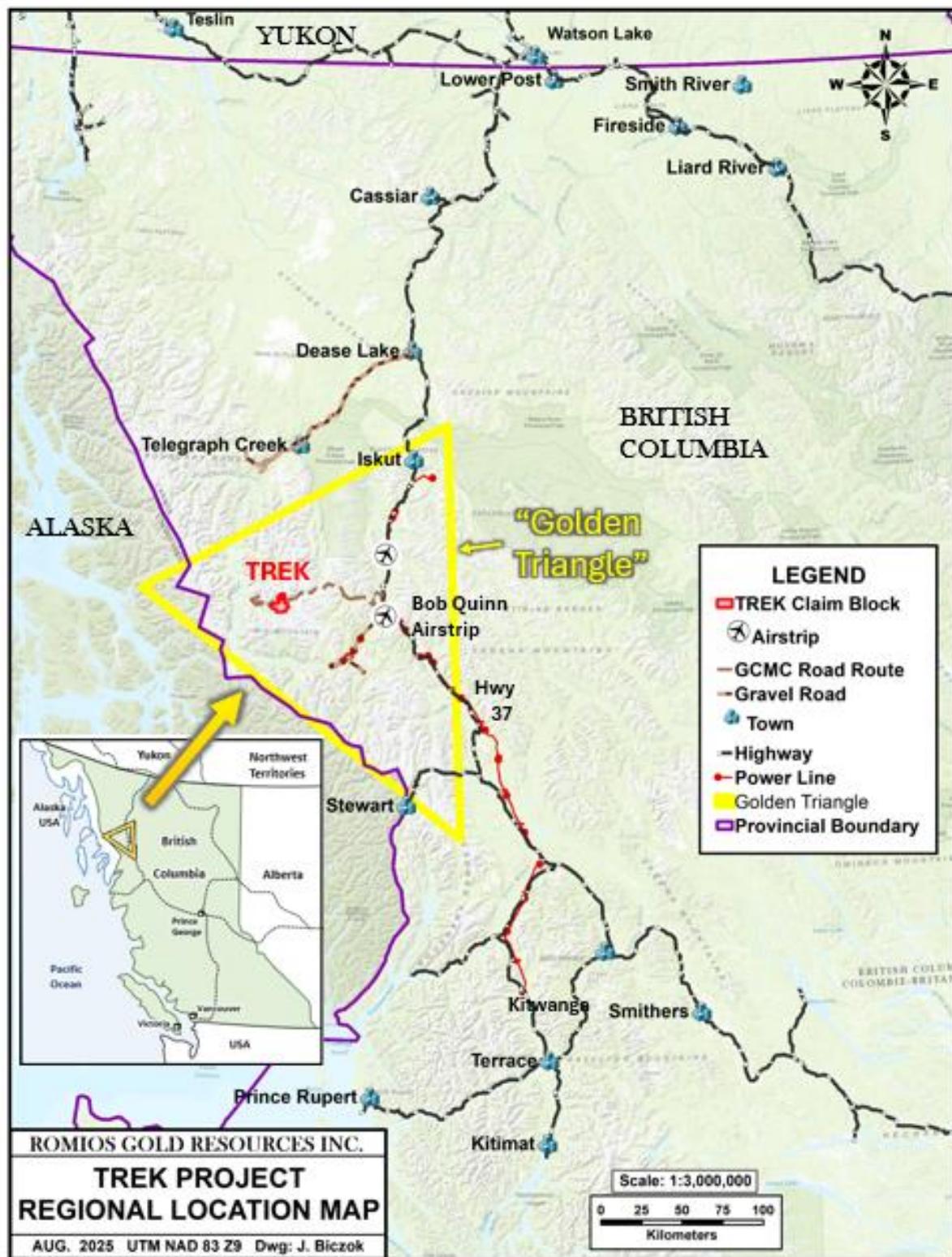


Figure 1: Regional location map of the Trek project, northwestern British Columbia

A detailed list of references and sources of information is provided in the References section of this Report.

3 RELIANCE ON OTHER EXPERTS

This section is not relevant to this Report since there is no reliance on other experts.

4 PROPERTY DESCRIPTION AND LOCATION

4.1 Location

The Trek property held by Romios is located in the Coast Range Mountains of northwestern British Columbia, Canada, 240 km northwest of Terrace, BC and 140 km northwest of the port of Stewart, BC (Figure 1). It lies within the Liard Mining Division on NTS map sheets 104B/14 and 104G/03. The Trek South zone is centred at about 57° 01' 34" N and 131° 18' 00" W and the Trek North zone is 3.5 km to the north. The northwest corner of the claims is about 8 km southeast of the Galore Creek porphyry deposits owned by GCMC and currently in the pre-feasibility study stage (Figure 2). The nearest settlements are Iskut on Highway 37, 119 km to the northeast, and Telegraph Creek, 94 km to the north-northwest. The Bob Quinn airstrip lies ~62 km to the west, also along Highway 37.

4.2 Property Holdings and Underlying Agreements

The Trek property consists of 24 contiguous Mineral Titles Online (MTO) map-selection mineral tenures covering 6,694.07 ha, which are in good standing until 2032 (see Table 1, Figure 3). The claim status has been confirmed by examining the Government of British Columbia's online mineral titles database at <https://www.mtonline.gov.bc.ca/mtov/home>.

The five original "core" claims (509238, 509239, 509240, 509243, 509245) were staked by the "Galore Creek Staking Syndicate 2003" (the "Syndicate") in 2005 and then optioned to Romios Gold Resources Inc. in 2006 for various cash and share payments, work commitments, and a 2% Net Smelter Returns Royalty (NSR). Romios has the right to purchase 1% of the NSR from the Syndicate at any point for \$1,000,000. Romios fulfilled all of the obligations under the option agreement by 2008 and now owns the Trek claims outright, subject to the NSR. The claims are currently held in the name of McLymont Mines Inc., a wholly owned subsidiary of Romios Gold Resources Inc. For the sake of brevity they will be referred to as Romios' claims in this report. The nineteen other claims of the Trek block were staked by Romios at various times after the five core claims were optioned, the newest claims along the southern margin of the Trek block were staked in 2021.

The Trek option agreement stipulated that any claims acquired, after the agreement was executed, within 5 km of the original 5 core claims would be subject to the 2% NSR granted to the Syndicate. This “area of interest” includes all of the current 24 claims in the Trek block.

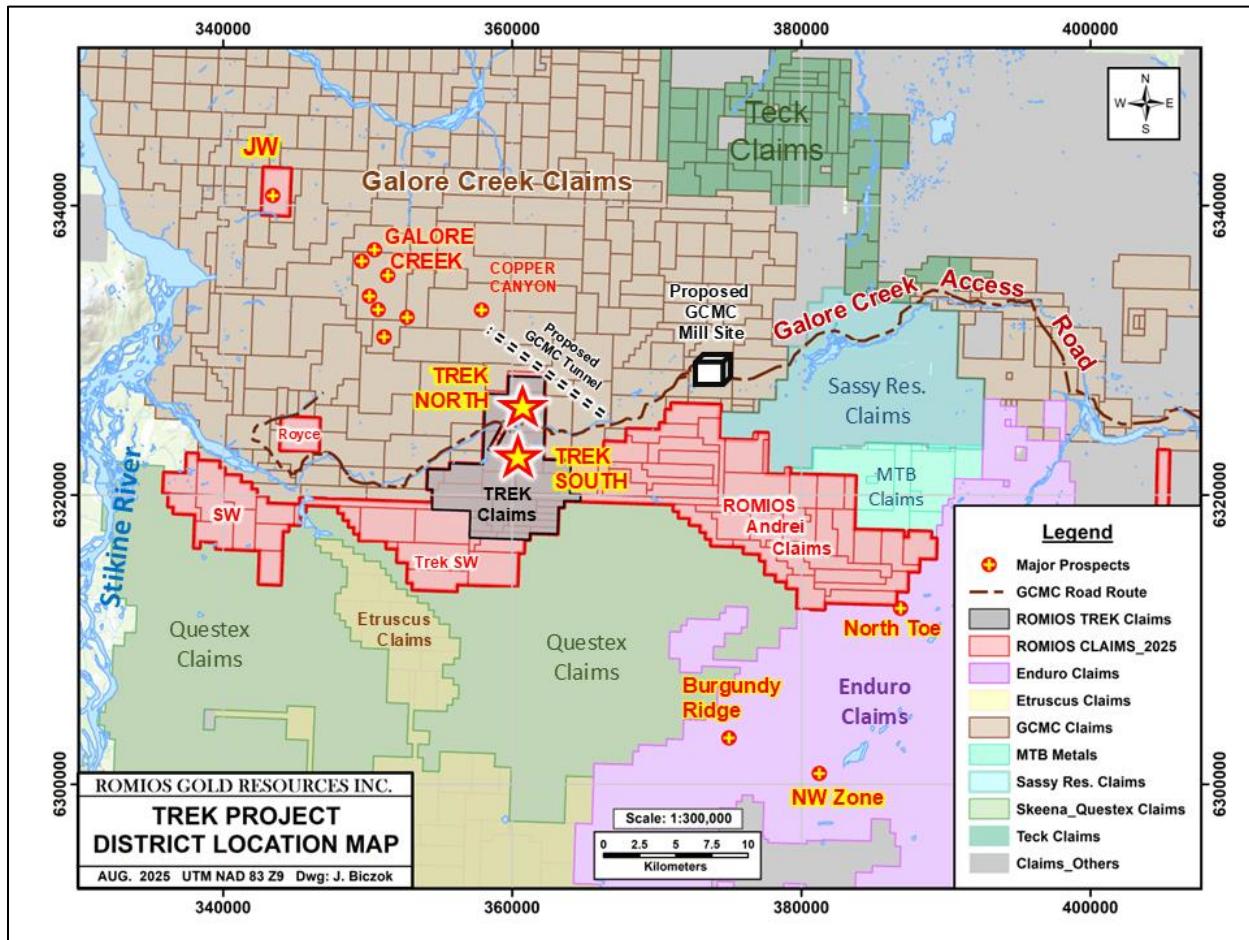


Figure 2: District location map of the Trek claims area

The Trek claims surround eight pre-existing 2-post legacy claims belonging to GCMC, the three “KIM” and five “SPHAL” claims, and they also overlap three of GCMC’s 4-post legacy claims to the north by about 335 m (Figure 3). These overlapping and included claims reduce the Trek property’s actual area by about 400 hectares. In the unlikely event that any of the legacy claims are allowed to lapse, the area covered by them will automatically become part of the Trek claims.

The Trek claims only pertain to the mineral rights of the area they cover. The surface rights are owned by the Province of British Columbia.

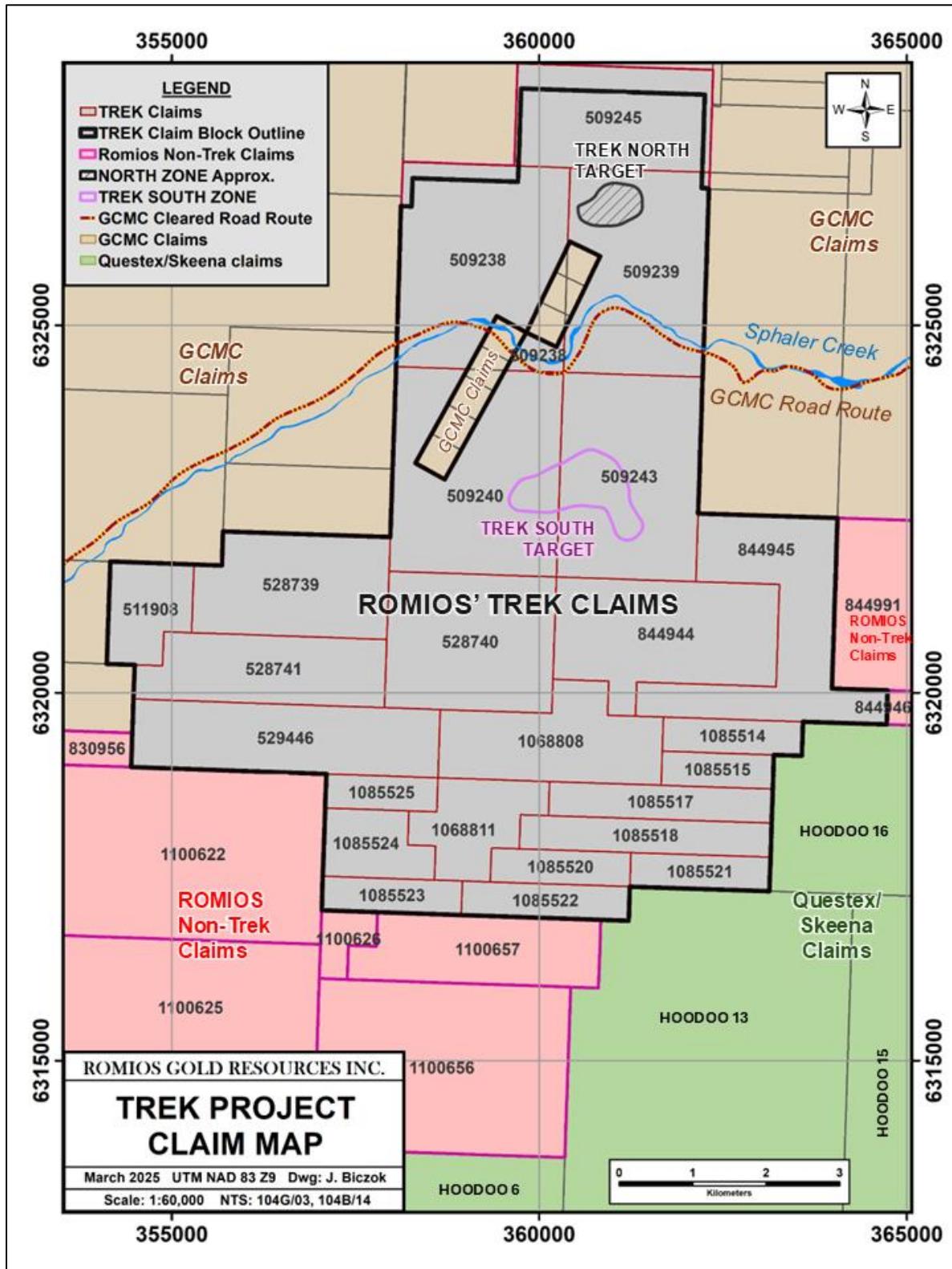


Figure 3: Trek Project claim map

Table 1: Trek claims held by Romios' wholly owned subsidiary, McLymont Mines Inc.

TREK Claim Details						
Title Number	Claim Name	Owner #	Owner Name	Issue Date	Good To Date	Area (ha)
509238	-	146096 (100%)	MCLYMONT MINES INC.	March 18, 2005	March 1, 2032	633.57
509239	-	146096 (100%)	MCLYMONT MINES INC.	March 18, 2005	March 1, 2032	527.98
509240	-	146096 (100%)	MCLYMONT MINES INC.	March 18, 2005	March 1, 2032	634.00
509243	-	146096 (100%)	MCLYMONT MINES INC.	March 18, 2005	March 1, 2032	528.33
509245	-	146096 (100%)	MCLYMONT MINES INC.	March 18, 2005	March 31, 2032	369.40
511908	-	146096 (100%)	MCLYMONT MINES INC.	May 1, 2005	March 1, 2032	140.96
528739	-	146096 (100%)	MCLYMONT MINES INC.	February 22, 2006	March 1, 2032	352.36
528740	-	146096 (100%)	MCLYMONT MINES INC.	February 22, 2006	March 1, 2032	422.90
528741	-	146096 (100%)	MCLYMONT MINES INC.	February 22, 2006	March 1, 2032	299.59
529446	-	146096 (100%)	MCLYMONT MINES INC.	March 5, 2006	March 1, 2032	387.79
844944	ANDREI A	146096 (100%)	MCLYMONT MINES INC.	January 28, 2011	March 1, 2032	440.50
844945	ANDREI B	146096 (100%)	MCLYMONT MINES INC.	January 28, 2011	March 1, 2032	440.48
1068808	TREK SOUTH	146096 (100%)	MCLYMONT MINES INC.	May 31, 2019	March 31, 2032	317.27
1068811	TREK SOUTH 1	146096 (100%)	MCLYMONT MINES INC.	May 31, 2019	March 31, 2032	176.31
1085514	TREK S1	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	88.13
1085515	TREK S2	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	70.51
1085517	TREK S3	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	141.04
1085518	TREK S4	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	158.68
1085520	TREK S5	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	88.17
1085521	TREK S6	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	88.17
1085522	TREK S7	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	105.81
1085523	TREK S8	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	88.18
1085524	TREK S9	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	123.43
1085525	TREK S10	146096 (100%)	MCLYMONT MINES INC.	November 17, 2021	November 17, 2032	70.52
24						6694.07

4.3 Permits and Community Agreements

Any exploration work of a surface disturbing nature such as drilling, trenching and/or the establishment of a camp requires a work permit from the Provincial Ministry of Mining and Critical Minerals. This “Notice of Work” permit is mandated under the Mines Act and can be awarded for one to five year periods; the longer term permits are known as “Multi-Year, Area Based Permits” (MYAB). Romios has had a series of permits granted for the Trek property, under the permit number MX-1-756, beginning with the first drill program in 2008 and renewed on a semi-regular basis over the years. The current 5-year permit was granted on November 3, 2025 and expires March 31, 2031. To cover the cost of any unfulfilled reclamation work associated with any upcoming drill program, Romios now has a total of \$91,000 in trust with the BC government in the form of a reclamation bond. This current permit grants approval for up to 35 diamond drilling sites, 20 helipads, and a drill camp.

An important part of both the work permit process and a positive working relationship with the local First Nations is community engagement. Since resuming exploration work in the Trek area in 2018 after a hiatus of several years, Romios has engaged with the local Tahltan First Nation in several ways including e-mail correspondence, occasional in-person meetings with Tahltan

leaders, and the signing of Communication Agreements in 2018 and 2023. In mid-year 2025, Romios embarked on a significant corporate restructuring with the specific goal of initiating the first-ever drilling of the Trek South porphyry prospect in 2026, to which end it has reengaged with the Tahltan membership, Tahltan environmental and archaeological entities, and the Company anticipates establishing an updated Communication Agreement with the Tahltan Central Government in 2026. The authors understand that the company sets a high priority on ensuring its exploration activities benefit local communities and the Tahltan membership in particular, through the provision of employment and contracting opportunities whether directly by the company itself, or through its subcontractors.

4.4 Environmental Liabilities

There are no significant environmental liabilities on the property of which the authors are aware. A number of old wooden drill and heli-pad platforms from the 2008-2011 drill programs remain on the property. Two are located in the area of the “Tundra Zone” on claim 509240 and appear to be in fairly good condition; this wood may be re-used for various purposes in the next drill program. Several partially collapsed wooden drill and helicopter pad platforms in the Trek North area should be cleaned up during the next field program. Three aluminium “fly-baskets” filled with various drilling supplies and rods, and a survival shack are neatly stored on the property and will likely be used in the next drill program.

The authors know of no additional factors or risks that may affect title, access or the right and ability to perform work on the property.

5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Access and Nearest Population Centres

The Trek claims are accessible by helicopter from several points, the nearest public site being the Bob Quinn airstrip, ~62 km to the east of the Trek claims (Figure 4). In the past, Romios crews have accessed the claims by helicopter, either from the Hardline Exploration Camp at km 45 on the Volcano Creek road, 60 km southeast of the Trek claims, or the Truffle Camp near the McLymont Creek laydown at the west end of the Eskay Creek-Northwest Hydro gravel road, 50 km south-southeast of the Trek claims. This road follows the Iskut River valley from Highway 37 to the Forrest Kerr hydroelectric station and ends at a laydown area near the McLymont Creek hydro power dam; a branch of the road leads south to the Eskay Creek mine site, currently under redevelopment, and the Volcano Creek power dam (See Section 5.3). During Romios’ initial work on the property in the 2006-2011 period, crews were first based at a fly camp on the property, then at Romios’ camp on McLymont Creek near Newmont Lake, 32 km southeast of the Trek South zone, and later at the GCMC Isbā camp, only 2.5 km east of the Trek claims. The McLymont

Creek camp is now owned by Enduro Metals Ltd. and has been decommissioned; the Isbā camp is still owned by GCMC but has been decommissioned for accommodation purposes, though heavy equipment remains on site. Early exploration crews in the area, prior to Romios' involvement, operated out of various bases and airstrips in the area.

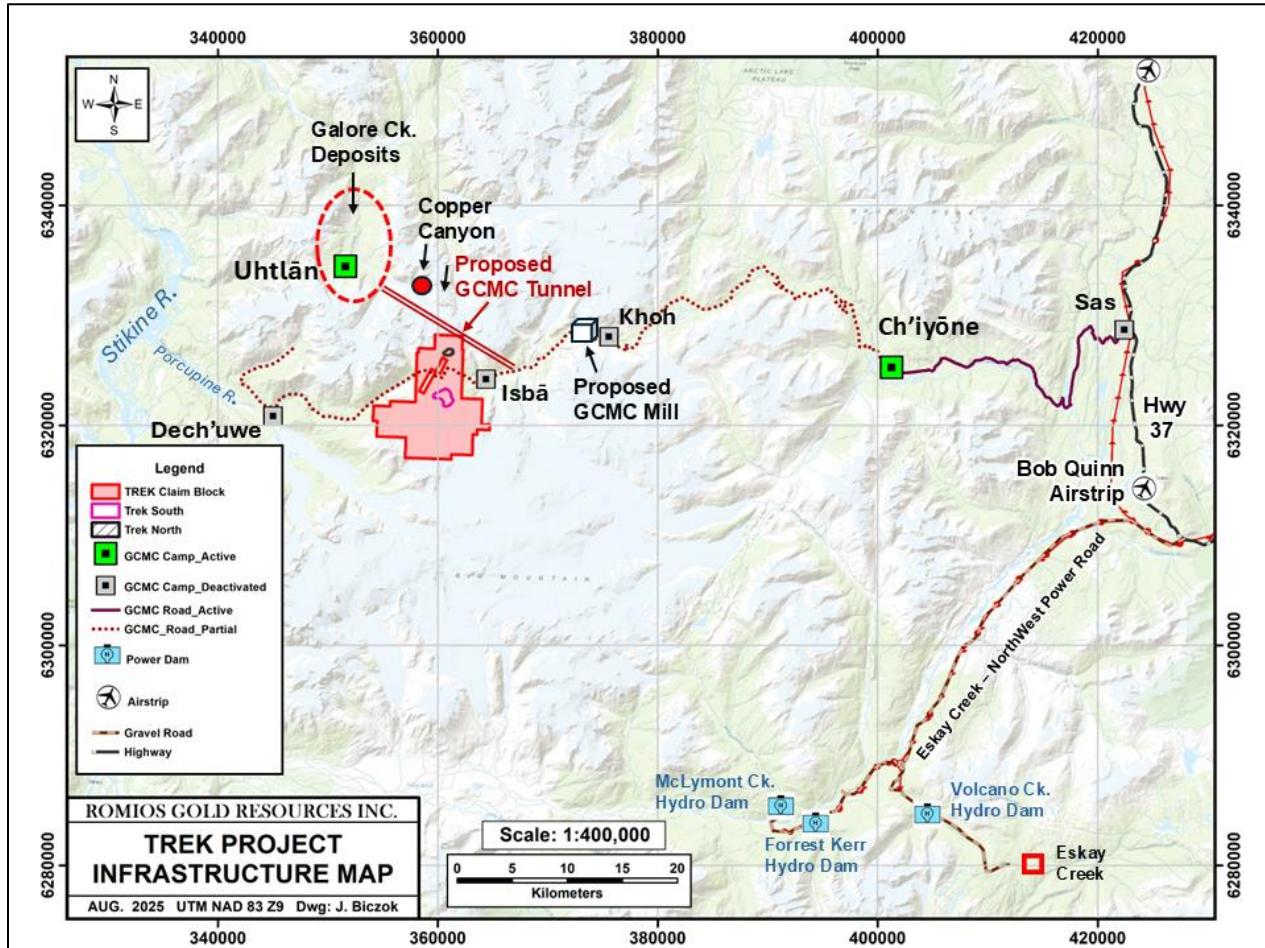


Figure 4: Infrastructure in the Trek claims area

The Trek property lies 12 km west along the Sphaler Creek valley from the proposed site of the GCMC millsite for the Galore Creek mining project and 7.6 km southeast of the nearest of the Galore Creek area porphyry Cu-Au-Ag deposits (Copper Canyon). The Galore Creek project is currently in the pre-feasibility study stage. If it proceeds to development, GCMC's current plan calls for a mill and tailings disposal site at Round Lake, 12 km east of the Trek claims, and a ~14 km long access tunnel to the mine site beginning ~ 2 to 4 km east of the Trek claim boundary. GCMC has partially constructed a 43 km long road from Highway 37 to the mill/tunnel area with several large construction camps spaced along the route, including the Isbā camp referred to above. A westward extension of this road route through the Trek claims to a previously proposed

access tunnel SW of the Galore Creek valley has been partially cleared, bisecting the Trek claims along Sphaler Creek, 1.3 km north of Trek South.

In September 2024, the federal government awarded GCMC \$20 million to complete construction of the access road from the Ch'iyōne Camp to the Khoh Camp in the Upper West More Valley (Figure 4). This work will bring the all-weather road to within ~12 km of the Trek claims.

The closest settlements to the Trek claims are Iskut on Highway 37, 119 km to the northeast, and Telegraph Creek, 94 km to the north-northeast (Figure 1). Daily airline flights are scheduled from Vancouver and other major centres to the towns of Terrace and Smithers, each about a 4 to 4.5 hour drive south of the Bob Quinn airstrip.

5.2 Climate

The climate of the Trek area is characterized by moderately cold winters with heavy snowfall and short, generally cool summers, with an estimated average precipitation of 230 cm rainfall equivalent, primarily as snow. June and July receive the least amount of rainfall, about 4 to 6 cm per month, but cloudy days with light mist are common throughout the summer. The nearest BC weather station with available historic climate data is at Telegraph Creek, 94 km NNE of Trek. Monthly average temperatures are relatively moderate throughout the year and range from daily maximums and minimums of -10.5° C and -18.1° C in January to 21.9° C and 7.5° C in July. Average monthly temperatures at the Galore Creek site are reported to be -13° C in January and +11° C in July (NovaGold Resources NI 43-101 report, 2008). The weather is generally suitable for exploration work from mid-May through October.

5.3 Local Resources and Infrastructure

In terms of local resources, there is an almost unlimited amount of water available in the area and abundant sand and gravel resources. There is a long history of mining in northwestern British Columbia and many inhabitants of the region, including the Tahltan First Nation communities, have work experience in the local mines and on major exploration programs in the area.

Three hydro-electric generating stations have been developed in recent years along the Iskut River 50-60 km south of the Trek property (Figure 4). These are the 195 MW Forrest Kerr hydroelectric plant, the 72 MW McLymont Creek plant, and the 16 MW Volcano Creek power plant. These hydro stations are at least in part “run-of-river” and require relatively little damming of the water flow. The power stations are connected to the Northwest Transmission Line of the provincial grid via a 287 kV transmission line and a sub-station at Bob Quinn. This line, passing 62 km east of the Trek claims, extends 437 km north from Terrace to Bob Quinn and then on to the Red Chris Mine and community of Iskut. The development of additional power plants along the Iskut River has been proposed by proponents in the past.

At their closest point, the Trek claims are 7.6 km southeast of the giant Galore Creek-Copper Canyon porphyry Cu-Au deposits (Figures 2 and 4) which are currently nearing the final stages of a pre-feasibility study by the owners, a Teck-Newmont JV (Galore Creek Mining Corp. or “GCMC”). As noted in Section 5.1, the Trek claims are crossed by the partially constructed/cleared route for a gravel access road from Highway 37 to the entrance of a once proposed tunnel into the Galore Creek valley at the head of Split Creek immediately north of Romios’ Royce claim (Figure 2). Once the current work, recently financed by the Federal government on the middle section of this road is complete, this all-weather road will come to within ~12 km of the Trek claims. If GCMC proceeds with development of the Galore creek project, the access road will be extended to the portal of the proposed mine access tunnel at a point ~2-4 km east of the Trek claims.

5.4 Physiography - Topography, Elevation and Vegetation

The topography of the Trek claims is mountainous and locally quite rugged with elevations ranging from ~580 m in the bottom of Sphaler Creek valley to over 2,200 m in the rugged, ice-covered mountains that dominate the southern 5 km of the claims (Figure 5). The north-facing slope of the land over much of the Trek South prospect is relatively gentle. The area extending 2 km north of Sphaler Creek is steep but not covered in year-round snow or ice.

The area of the Trek South site proposed for drilling is entirely above tree line, gentle to moderately sloping and even locally flat lying, mostly barren bedrock devoid of vegetation, and has only recently been exposed due to recession of the Trek South glacier (Photo 1). This area will readily host a drill camp and will require minimal effort to construct drill pads. In contrast, Trek North lies on a south-facing, steep slope and is largely grass covered with small stands of stunted conifers (Photo 2). The lower slopes between these two sites are covered by a dense growth of hemlock and spruce with an undergrowth of devil’s club and huckleberry. Steeper open slopes are covered by dense slide alder growth. Open alpine vegetation is locally present above tree line, which lies near 1,200 m on south-facing slopes and 1,050 m on north-facing slopes. The elevation of the area extending south of the Trek South target rises rapidly from 1,280 m to as much as 2,200 m over a 5 km wide area which is largely covered by glaciers and snowfields with local exposed rocky ridges (arêtes).

6 HISTORY

6.1 Property Ownership

The Trek claim block is comprised of 24 mineral tenures. Of these, a central core of 5 claims were acquired in 2006 under the terms of an option with the “Galore Creek Staking Syndicate 2003” (See Section 4.2). These claims (#509238, 509239, 509240, 509243, and 509245) cover both the

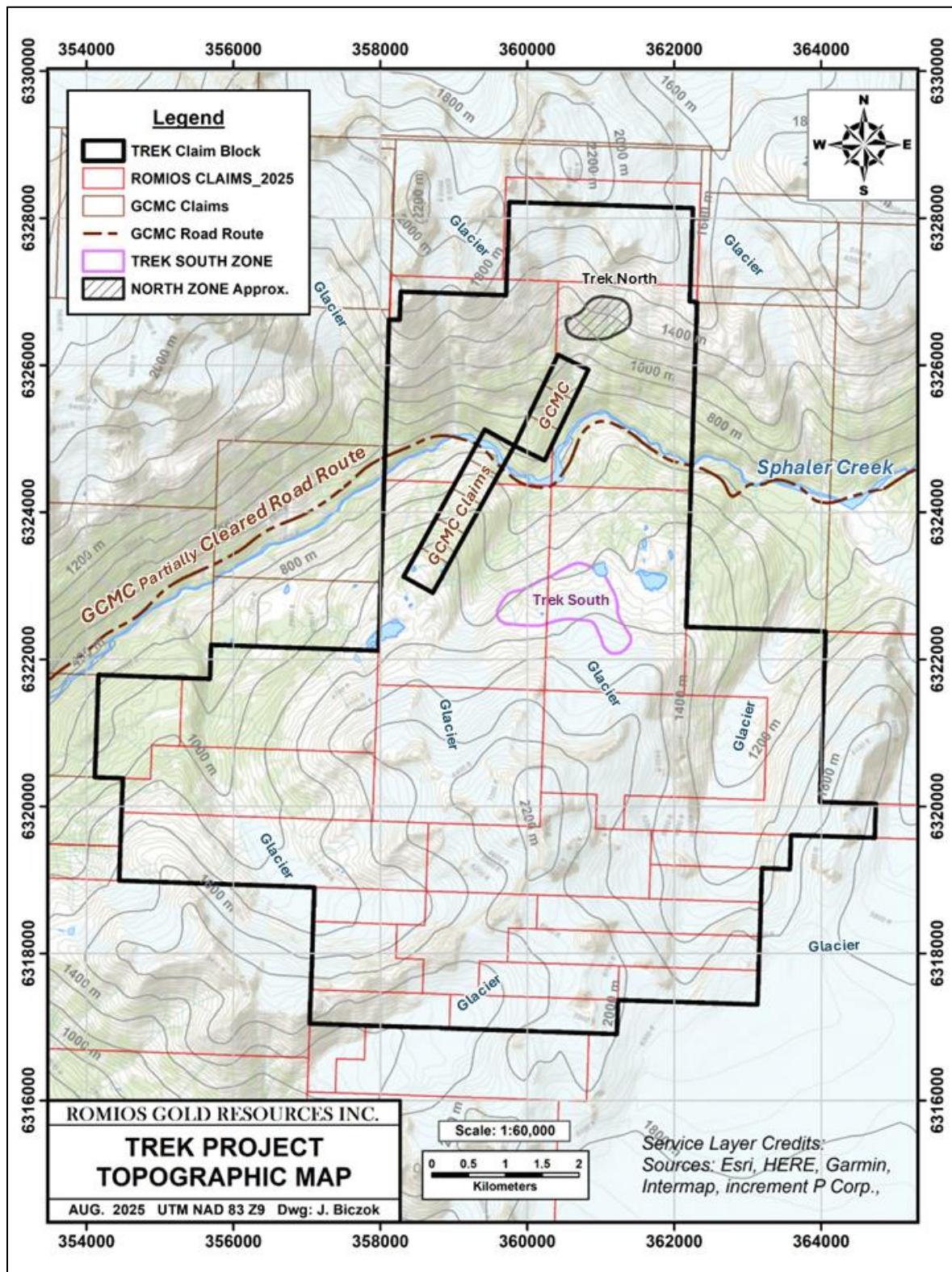



Figure 5: Topographic map of the Trek claims

Photo 1: Aerial view of Trek South, looking southeast

(The Trek South zone is exposed in front of the central glacier)

Photo 2: View of the Trek North area, looking north

(The Trek North mineralized breccia is exposed in the brown cliff face in the centre of the photo. Diamond drilling was conducted from the grassy areas above the cliff).

Trek North and Trek South zones as well as the Toe Zone and several other historic prospects. Romios fulfilled all of the option terms by 2008 and now holds a 100% interest in the claims, subject to a 2% NSR to the vendors (See Section 4.2). The nineteen other claims of the Trek block were staked by Romios at various times after the five core claims were optioned, with the most recent claims along the southern margin of the Trek block staked in 2021. The underlying area was previously explored and claims held intermittently by a series of exploration and mining companies beginning in 1957; these previous exploration programs are summarized below.

6.2 Previous Exploration

The first significant mineralization discovered in the area was in the Galore Creek valley in 1955 by a subsidiary of Hudson Bay Mining and Smelting Co. and it is now owned by the GCMC joint venture between Teck and Newmont. Subsequent exploration programs since the initial discoveries have identified a series of alkalic porphyry Cu-Au-Ag deposits at Galore Creek with a current Measured and Indicated resource estimate of 1.197 billion tonnes grading 0.46% Cu, 0.25 g/t Au and 4.5 g/t Ag, and an additional Inferred resource of 237.8 million tonnes grading 0.26% Cu, 0.19 g/t Au and 2.6 g/t Ag (GCMC website, 2025). The discoveries at Galore Creek and Schaft Creek in the 1950s were followed by numerous exploration programs in the region resulting in the discovery of many prospects including the Trek North Zone and Romios' JW porphyry prospect northwest of Galore Creek.

Exploration programs in the Trek property area by a series of claim holders and companies that optioned or had an interest in the claims pre-dating Romios' involvement are summarised in Table 2 below. This includes work on the KIM and SPHAL claims (Figure 6) which are the remnants of a much larger series of claims, most of which were later dropped.

6.2.1 BIK Syndicate and Kennco 1957-1960

Exploration on what is now the Trek property was initially carried out by the BIK syndicate (Silver Standard/McIntyre/Kerr Addison) in 1957, resulting in the discovery of the Silver Standard Zone (Figure 6) that was later staked in 1962 and 1963 as part of the KIM and GOAT claims (Rayner and Ney, 1964). In 1964, during a silt sampling exploration program, several mineralized zones were discovered north of Sphaler Creek, including the North Zone (now "Trek North"), the adjacent North East Zone and the Lower North Zone, and additional mineralized prospects were found south of Sphaler Creek and to the west of the Silver Standard Zone, i.e., the West and Camp Zones. These zones contain both porphyry Cu-Au style mineralization and massive sulphide veins and were reported to be related to monzonitic plugs and stocks. From this early work, eight claims were retained within the Trek property by Kennco/BIK and later sold to NovaGold Resources in 2004 and are now owned by GCMC.

Table 2: Summary of pertinent exploration programs in the Trek claims area pre-Romios.

PROGRAM	YEAR	GEOLOGY	GEOCHEMISTRY	GEOPHYSICS	DRILLING/ TRENCHING	TARGET AREA	REFERENCE
BIK Syndicate	1957-62	Mapping, prospecting	?			Sphaler Creek, N & S sides	Rayner, 1966
Kennco	1963-64	Mapping, prospecting	Silt samples, Cu-Mo analyses		Numerous small trenches	Sphaler Creek, N & S sides	Rayner and Ney, 1964
Kennco/BIK	1965			1.09 miles IP, 2 lines; ~3 km mag		Gully Zone	Hallof, 1965; Folk and Spilsbury, 1980
Kennco/BIK	1970	Detailed mapping	100 soils, rocks		7 DDH: 545 m, AQ core		Folk and Spilsbury, 1980; Milne, 1970
Teck	1980	Detailed mapping, 105 Ha	201 soils, 12 rocks, + silts	11.8 km magnetics, flagged grid		Camp-Tangle Zone Area	Folk and Spilsbury, 1980
Teck	1981		45 rocks, chip sampling			Camp Zone & Trek North	Folk, 1981.
Pass Lake Resources	1988					Staked TREK 1-6 claims, covers core areas.	Awmack and Yamamura, 1988
Lorica Res. (option from Pass Lake)	1988	Mapping, prospecting	9 silts, 430 soils, 152 rocks	5.4 km mag, 7.0 km VLF		Gully, East, Heel, Toe zones	Awmack and Yamamura, 1988
Lorica Res. (option from Pass Lake)	1989	Mapping, prospecting	3 silts, 697 soils, 112 rocks	8.7 km mag, 7.1 km VLF	5 trenches	Gully & Heel zones	Caulfield, 1989
Lorica Res. (option from Pass Lake)	1990	Mapping, prospecting	2 silts, 356 soils, 258 rocks	6.5 km mag, 6.5 km VLF		Grey, Heel, Arch & Pickle zones (now Tundra), West, East, Gully, Silver Std, Wall, Toe	Awmack, 1991
Warner Ventures (option from Lorica/ Pass Lake)	1993	Prospecting	26 rocks		6 DDH: 450 m, 132 core samples	Gully Zone drilling; prospecting at Wall zone	Baknes, 1994

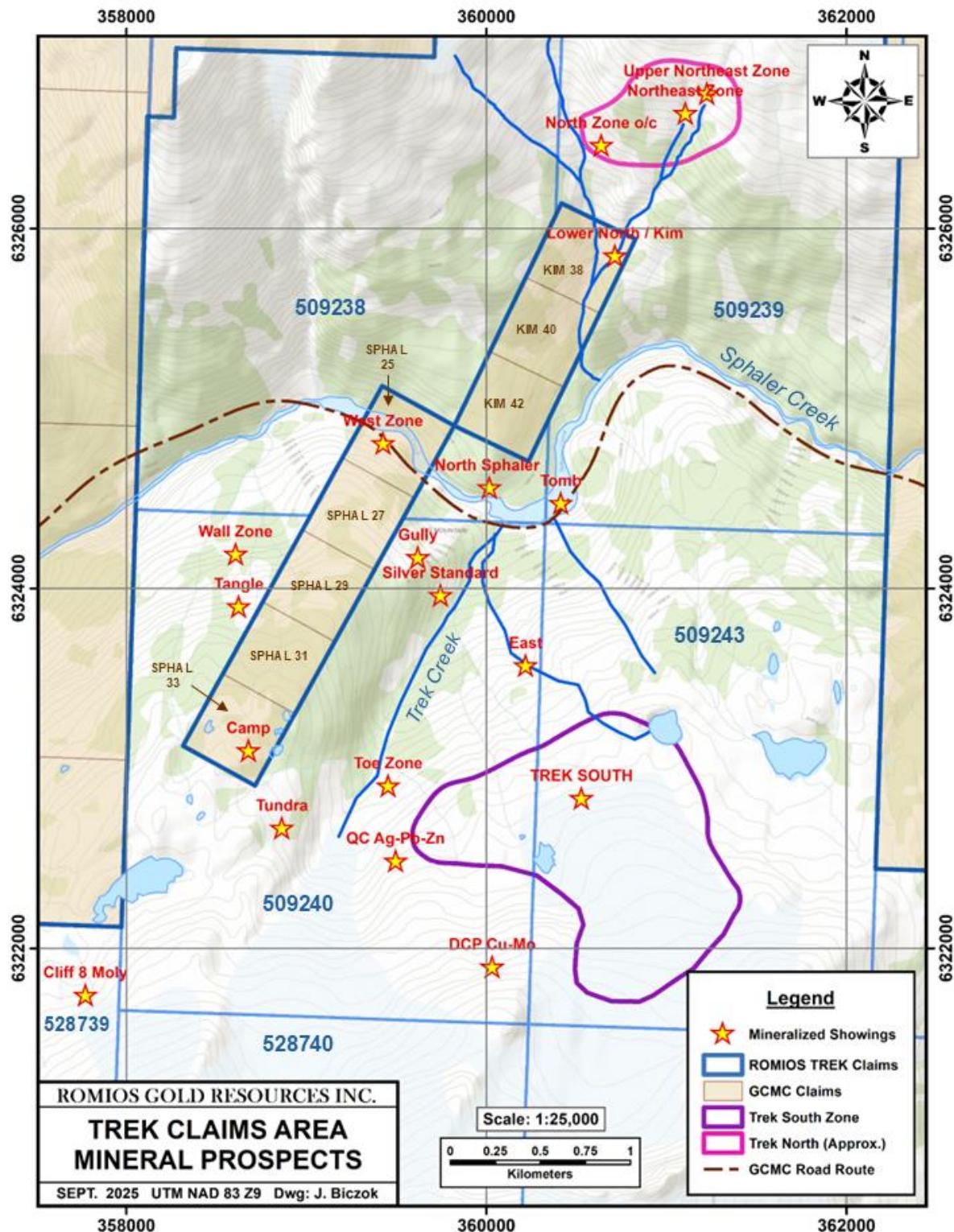


Figure 6: Map of the mineralized prospects in the Trek claims area

6.2.2 Consolidated Silver Standard Mines Ltd. – late 1960s to 1970

The core Trek claims area was staked by Consolidated Silver Standard Mines Ltd. (Silver Standard) in the late 1960s as a large block of KIM and SPHAL claims. They completed 488 m (1,600 feet) of AQ-diameter diamond drilling in four holes testing the lower portion of the West Zone and three holes targeting the North Zone (now Trek North) (Milne, 1970 – referenced in Awmack, 1991). The West Zone drilling intersected weaker mineralization than is exposed at surface, the best result being 0.34% Cu over 15 m. All three holes targeting the North Zone were abandoned due to caving before reaching the target breccias.

6.2.3 Teck (under option from Silver Standard) – 1980 to 1981

In 1980, the Silver Standard claims were optioned by Teck and their crews then undertook a program of soil sampling (201 samples), geological mapping and 11.8 km of ground magnetometer surveys (Folk and Spilsbury, 1980), primarily in a gridded area between Trek Creek and the Camp and Tangle Zones (see Figure 6 for zone locations). The numerous showings in this area immediately south of Sphaler Creek were interpreted as being related to monzonite intrusions peripheral to the main fault zones but with limited size potential. The soil sampling program revealed a ~1 km long copper anomaly with values up to 6,500 ppm Cu, with coincident sporadic gold and silver anomalies, trending from the Tundra Zone to the Camp Zone. The area north of Trek Creek was believed to have greater potential but was not easily evaluated due to the topography. This program was followed up in 1981 by a chip sampling program targeting the main breccia outcrops at the (Trek) North Zone and anomalous portions of the 1980 grid south of Sphaler Creek. The best result from the North Zone breccias was 2.45% Cu, 0.31 oz/t Ag and 0.0066 oz/t Au over an area of ~18 m x 20 m (Folk, 1981). Mineralization around the Camp Zone proved to be somewhat scattered with intervening barren intervals, still, the weighted average of all samples from 1980-81 was 0.37% Cu, 0.0168 oz/t Au and 0.1 oz/t Ag (Folk, 1981).

After the 1981 program only eight claims were retained (Figure 6) and the remaining KIM and SPHAL claims were allowed to lapse.

6.2.4 Lorica Resources (under option from Pass Lake) – 1988 to 1993

An area roughly equal to Romios' five core claims at Trek was staked in 1988 by Pass Lake Resources as their Trek 1-6 claims and subsequently optioned to Lorica Resources. Lorica hired Equity Engineering Ltd. to explore the property in 1988, 1989 and 1990 leading to the discovery of several new zones including the Gully, Heel, Arch and Pickle Zones (now amalgamated into the Tundra Zone), as well as the high-grade Toe Zone, large mineralized quartz veins at the East Zone, and the Wall Zone cpy-po-mt-py lenses (Awmack and Yamamura, 1988; Caulfield, 1989, Awmack, 1991). A chip sample of a massive sulphide vein from the Gully Zone assayed 5.31% Cu and 8.77 g/t Au over 3.6 metres (Awmack and Yamamura, 1988).

In the late 1980s, Lorica Resources collected 1,483 soil samples over the area south of Sphaler Creek and on either side of Trek Creek. Samples were collected at 25 m spacings along lines

spaced 100 m apart. The coverage extended first from Trek Creek to the SPHAL claims boundary, over the Gully Zone, south to the Heel Zone (now part of the Tundra Zone) and then moved west of the SPHAL claims, leading to the discovery of the Wall Zone, and thereafter east of Trek Creek to cover the Toe Zone and East Zones. The anomalous results of this work, along with a ground magnetic and VLF survey, helped outline the potential extent of the Gully zone as 400 m to perhaps 900 m long (Baknes, 1994).

Soil samples in the Toe-East Zone area were collected along the 50 m spaced topographic contour lines. Anomalous values up to 59 ppm Ag, 430 Cu, and 3,960 Zn were returned from the limited soil samples collected around the Toe Zone. Soil sampling along topographic contours north of Sphaler Creek produced only spotty anomalous results, the most continuous copper anomaly is close to Sphaler Creek north of the Tomb Zone. This sampling area is >1 km south of the Trek North zone.

6.2.5 Warner Ventures (under option from Lorica and Pass Lake) - 1993

In 1993, Warner Ventures Ltd. entered into an option agreement with Lorica pertaining to the Trek claims under option from Pass Lake. Warner financed a 1993 drill program at the Gully Zone testing it with six holes, totalling 450.1 metres, from three sites along the eastern side of the zone. Narrow massive and semi-massive sulphide veins were intersected within a highly sericite-chlorite-epidote altered zone, possibly a shear zone or a volcanogenic horizon (Baknes, 1994). Drill intercepts included 10.4 m @ 1.49% Cu and 1.5 g/t Au and 6.0 m @ 1.26% Cu and 3.1 g/t Au. The extent of the Gully Zone was thought to be >400 to 900 metres based on geophysics, soil geochemistry and rock sample results; drilling indicated that mineralization persists to a depth >140 m and a length of >110 m (Baknes, 1994).

There is no further record of activity on the Trek property until 2005 when it was staked by the “Galore Creek Staking Syndicate, 2003” and subsequently optioned to Romios in 2006.

6.3 Exploration by Romios 2006-2025

Please refer to Section 11 – Exploration, for details of the work carried out by Romios during this period.

6.4 Mineral Resource Estimates

The authors are unaware of any compliant mineral resource or reserve estimate for any of the mineralized zones on the current Trek claim block.

In 2010, wireframe shapes were constructed around the Trek North mineralization on behalf of Romios by Pierre Desautels of AGP Mining Consultants Inc. (referenced in Desautels, 2011; filed on SEDAR). These wireframe shapes were used in planning the next drill programs. The 2010 outline of the mineralized zones was based on the first 15 holes drilled at this prospect (2008 to 2009 drilling) and was not sufficient to determine a resource estimate.

6.5 Mineral Production

There has been no mineral production from the Trek claim block.

7 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Historical Mapping

The first mapping in the Stikine River and Iskut River area was undertaken by the Geological Survey of Canada (GSC) from 1926 to 1929 under the direction of Forrest A. Kerr. His work was compiled posthumously by H.C. Cook and published in 1948 (Kerr, 1948). Kerr's mapping did not extend into the Trek claims area but it was the first to describe some of the key rock units in this region. The Trek claims area was first mapped by J.G. Souther as part of his work on the 1:250,000 Telegraph Creek map sheet, NTS 104G, in the 1950s and 1960s (Souther, 1972). Souther noted the presence of the "Goat" showing, presumably what is now known as the "Lower North" showing, and divided the local stratigraphy into the Permian limestone on the east side of the claims (now the Stikine Assemblage) and Upper Triassic undifferentiated volcanic and sedimentary rocks (now the Stuhini Group) on the remainder. He also identified a "small felsite (in part monzonite) intrusive" associated with the Goat showing.

More detailed mapping of the Sphaler Creek and Trek claims area at a scale of 1:100,000 was undertaken by J.M. Logan and V.M. Koyanagi, beginning in 1989 and published in 1994 as British Columbia Ministry of Energy, Mines and Petroleum Resources Bulletin 92 (Logan and Koyanagi, 1994). This work documented the regional distribution and stratigraphy of the late Triassic Stuhini Group that underlies much of the Trek claims as well as the upper Paleozoic primitive island arc rocks comprising the Stikine Assemblage; the Stuhini Group strata unconformably overlie the early Permian carbonate slope deposits of the Stikine Assemblage. The Stuhini Group rocks on the Trek claims were mapped primarily as "pyroxene-porphyry breccia flows" and "basaltic-andesitic plagioclase and hornblende porphyry flows and tuffs" cut by several small, middle to late Triassic augite monzonite intrusions.

In addition to the aforementioned work by the GSC and the BC Geological survey (BCGS), much more detailed mapping has been undertaken by various exploration companies holding claims in this area over the years. The work by Romios since 2008 has been the most detailed and the description of the claims' geology in the following sections is based largely on this work.

7.2 Regional Geology

The regional geology in the Trek area consists largely of mid-Paleozoic Stikine Assemblage and Mesozoic Stuhini Group island arc successions, intruded by Triassic, Jurassic and Eocene plutons. The general geology of the region is presented on Figure 7, taken from the BCGS digital geology map with some minor modifications. For any details not visible or labelled on Figure 7, the reader

is referred to the digital BCGS geology map, available for download at <https://www2.gov.bc.ca/gov/content/industry/mineral-exploration-mining/british-columbia-geological-survey/geology/bcdigitalgeology>. The geological legend for Figure 7 is presented in Table 3 below.

7.2.1 Paleozoic: Stikine Assemblage

The area extending east from the eastern boundary of the Trek claims and encompassing most of Romios' Andrei claims (Figures 7 and 8) has been mapped by the BCGS as the Paleozoic Stikine Assemblage which comprises four main subdivisions:

1. Devonian to Carboniferous variably foliated limestone, phyllite, mafic and felsic flows and tuff.
2. Lower to Middle Carboniferous limestone up to 700 m thick; conformably overlies the Devonian to Carboniferous section above.
3. Upper Carboniferous to Permian thick-bedded conglomerate, siliceous siltstone and mafic to intermediate volcaniclastics, greater than 300 m thick and conformably to unconformably overlies the Lower to Middle Carboniferous limestone.
4. Lower Permian limestone and other calcareous metasediments form a thick sequence at the top of the Stikine assemblage.

The overall paleogeographic setting is one of a series of volcanic island arcs with fringing carbonate reefs and banks capped by a marine carbonate slope (Logan et al., 2000).

7.2.2 Lower and Middle Triassic: Stuhini Group

In general, the majority of the area extending west from the Trek claims to the Stikine River and south past the Iskut River are underlain by upper Triassic Stuhini Group stratigraphy, described by the BCGS as predominantly volcanic rocks with lesser clastic sediments (shale, siltstone) (Figure 7). The volcanic rocks include three different calc-alkaline volcanic suites:

1. a lower sub-alkaline, hornblende-bearing, basaltic andesite,
2. a sub-alkaline to alkaline augite-porphyritic basalt, and
3. an uppermost alkaline orthoclase and pseudoleucite-bearing shoshonitic basalt.

The lower suite is the most voluminous and least distinctive, with aphyric and sparse hornblende and plagioclase-phyric flows, breccia and tuff. These units are fine to medium-grained and both massive and fragmental textures are common. The middle suite consists of augite and feldspar-phyric breccia flows and fragmental rocks. The upper volcanic unit consists of an interbedded sequence of basic, coarse pyroxene feldspar flow breccias, orthoclase feldspar crystal tuffs and coarse pseudoleucite flows and/or sills.

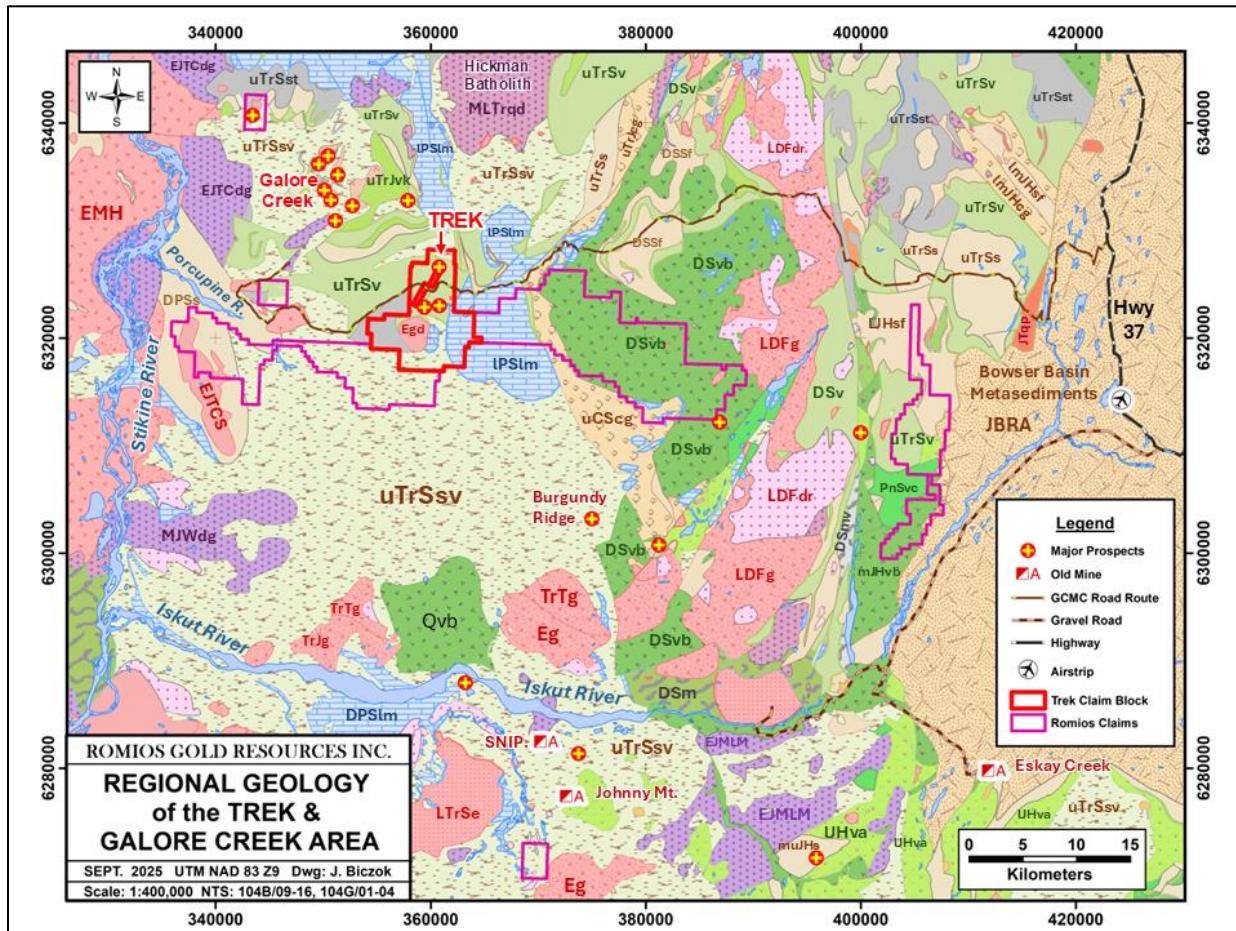


Figure 7: General geology of the Trek claims and surrounding area

7.2.3 Intrusive Rocks

Several major suites of intrusive rocks have been distinguished in the region and the classification and grouping of these intrusions has evolved in recent years due to an increasing number of high-quality age-dates and field studies, e.g., Bailey et. al. (2025); Campbell and van Straaten (2025).

Late Triassic Stikine Plutonic Suite (including the Hickman Batholith)

The Stikine Plutonic Suite, dated at 225-219 Ma (Bailey et. al., 2025), comprises a series of large calc-alkaline plutons that extend across northern Stikinia between the South Scud River and the Mess Creek fault zones (Campbell and van Straaten, 2025). This suite includes the Hickman pluton, the Nightout pluton, and multiple intrusive bodies at the Shaft Creek Cu-Mo-Au deposit.

Table 3: Geological unit legend to accompany the regional geology map (Figure 7)

STRATIGRAPHY	INTRUSIONS
<u>DEVONIAN-PERMIAN</u>	<u>EOCENE</u>
STIKINE ASSEMBLAGE	EMH – Major Hart granite
IPSIm – Lower Permian Lst, marble PNSv – Pennsylvanian undivided volc tuffs, basalt PnScg – Penn. conglomerate, coarse clastics MSIm – Mississippian limestone uCScg – Upper Carboniferous cgl, coarse clastics DPSIm – Devonian to Permian limestone DPSs – Devonian to Permian sediments DSIm – Devonian limestone DSv – Devonian unsubdivided volcanics DSsf – Devonian graphitic schist, Qtz-Ser schist, siltstone, sandstone, argillite DSvb – Devonian basaltic volcanics DSm – Devonian unsubdivided metamorphic rocks DSmy – Devonian mylonitic, gneissic, schistose rocks along Forrest Kerr fault	<u>DEVONIAN</u>
<u>LOWER TO MIDDLE JURASSIC</u>	<u>JURASSIC TO TERTIARY</u>
HAZELTON GROUP	LDFdr – Late Devonian Forrest Kerr diorite LDFg – Late Devonian Forrest Kerr plutonic suite JTqp – Jurassic to Tertiary Qtz-Fd porphyry, pyritic felsite, orbicular rhyolite, high-level intrusions
mJHvb – basaltic volcanic rocks ImJHsf – mudstone, siltstone, shale, fine clastics ImJHSvb – Salmon R. Fm basalts ImJHSvf – felsic volcanics IJHva – andesitic volcanic rocks ImJHcg – conglomerate, coarse clastics	<u>EARLY JURASSIC</u> EJTCgd – Texas Creek monzonite to diorite EJTCs – Texas Creek plutonic suite – Summit L. or Texas Ck. Stocks EJMLM – Melville & Lehto plutons, Mitchell Intrusions, Red Bluff Porphyry
<u>UPPER TRIASSIC TO LOWER JURASSIC</u>	<u>LATE TRIASSIC to JURASSIC</u>
STUHINI GROUP	MLTrgd – Middle to Late Triassic Hbl-Qtz diorite, granodiorite, tonalite, including the Hickman Batholith LTrgd – Late Triassic granodiorite
uTrJvk – alkaline volcanic rocks, conglomerate uTRJcg – conglomerate, sandstone, shale, mafic to intermediate volcanic breccia uTrSsv – sediments and volcanics uTRSV – unsubdivided volcanics, tuffs uTrSs – unsubdivided sedimentary rocks uTrSst – greywacke, siltstone, shale	

The Hickman batholith is a composite 1,200 km² body which shows crude zonation from pyroxene diorite in the core to biotite granodiorite near the margins; the ~15 x 26 km main body of the intrusion begins about 10 km north of the Trek claims with smaller intrusions scattered through the area. It was most recently age-dated by Bailey et. al. (2025) at 220-222 Ma. The Schaft Creek calc-alkaline Cu-Mo-Au porphyry deposit occurs in Stuhini Group rocks along the eastern contact of the Hickman batholith and appears to be related to a series of adjacent 219 Ma Stikine suite intrusions. Copper and gold mineralization occurs elsewhere in localised veins and skarns along the margins of the batholith.

Late Triassic Galore Plutonic Suite (previously the Copper Mountain Plutonic Suite)

The Galore plutonic suite can be subdivided into three main units forming a series of small pyroxenite, foid syenite and syenite to monzodiorite intrusive bodies and related dykes scattered across northwestern Stikinia (Campbell and van Straaten, 2025). It is defined by the unique, 25 km² alkaline intrusive and volcanic complex at the Galore Creek porphyry deposit site where it has been dated at 210-204 Ma. Other examples of this suite occur at the Copper Canyon deposit a few kilometres southeast of Galore Creek, at the Trek North site, at Burgundy Ridge on Enduro Metals claims 23 km SE of Trek, on Romios' claims covering portions of the Rugged Mountain and Latimer Lake plutons NW of Telegraph Creek, and the Bronson and Zippa Mt. intrusions south of the Iskut River. Campbell and van Straaten (2025) have tentatively assigned the Jack Wilson intrusion on Romios' JW claims, 6 km NW of Galore Creek, to the Galore plutonic suite; age-dating and lithogeochemical studies are underway at the BCGS to test this hypothesis. At Galore Creek, the plutonic suite consists of ten phases of orthoclase-porphyritic syenite intrusions cutting coeval Stuhini Group rocks of the upper volcanic unit (Logan, 2005; Enns et al., 1995; Mortensen et al., 1995). These are spatially and genetically related to the Galore Creek and Copper Canyon Cu-Au porphyry deposits.

Late Triassic to Early Jurassic Texas Creek Plutonic Suite

Calc-alkaline monzonite to monzodiorite intrusions of the Texas Creek suite (~204-188 Ma) are common through the Stewart/Unuk/Iskut/Galore Creek area and are associated with a number of porphyry (Kerr Zone) and related vein (Sulphurets, Scottie, Snip, Silbak Premier, Red Mountain) deposits as well as the Brucejack gold mine. This suite is believed to be comagmatic with the lower part of Hazelton Group (Campbell and van Straaten, 2025). Recent age-dates and field studies (Bailey et. al., 2025; Campbell and van Straaten, 2025) also suggest that the Texas Creek plutons are confined to an area east of the Forrest Kerr fault; if so, this would change the previous classification of several large plutons in the western Galore Creek area.

Late Early Jurassic Cone Mountain Intrusive Suite

This suite comprises an extensive series of granodiorite to diorite and quartz monzonite plutons situated between the Scud River and the town of Telegraph Creek, and at 185 Ma it post-dates virtually all of the youngest Jurassic porphyry related mineralization in the Golden Triangle except

for the epithermal gold deposit at the Brucejack mine (Campbell and van Straaten, 2025). This suite was first recognized in 1996 (Brown et. al., 1996) and now includes a number of plutons previously thought to be part of the Stikine or Texas Creek suites, including the Perelishin pluton on Romios' former JW WEST claims.

Eocene Major Hart Plutonic Suite

Small Eocene (~51-55 Ma) circular stocks and plugs of biotite quartz monzonite of the Major Hart suite are scattered throughout the area. Logan and Koyanagi (1994) believe them to be satellite bodies to the main Coast Plutonic Complex, which lies to the west. They are generally equigranular, medium-grained and unaltered, and locally have associated minor Cu-Mo mineralization. The ~3 km wide semi-circular granitic pluton in the SW corner of the Trek claims is part of this suite and has been dated at 47.3 Ma (K/Ar age from biotite, BC age-date digital database). The 600 m x 250 m zoned granodiorite to monzonite intrusion discovered in 2022 at Trek South as well as a series of white, mafic-poor, fine-grained felsic dykes in that area have both been age-dated at UBC on Romios behalf at 51.7 Ma and presumably belong the Major Hart suite (C. Wall, *pers. comm.*).

7.2.4 Structure

The dominant structures in the Galore Creek area are two approximately orthogonal fold trends - an earlier westerly trend and a later one trending northerly (Logan and Koyanagi, 1994). These structures deform earlier syn-metamorphic, pre-Permian structures and related northeast-striking penetrative foliations. East-dipping reverse faults which imbricate the Stikine Assemblage and offset Early Jurassic plutons are associated with north-trending folding. Northeast sinistral fault zones and younger north-striking extensional faults host Eocene stocks and Miocene dykes, respectively (Logan and Koyanagi, 1994). Febo *et. al.* (2021) have suggested that north and east-trending structural patterns in NW Stikinia reflect a left-propagating Paleozoic rift while the NNE-trending structures reflect Mesozoic rifts. They also suggest that the north-trending structural corridors reflect a rift pattern, offset by the major east-trending (transform) faults, and that these rifts are the loci of magmatic activity.

7.2.5 Metamorphism

Sub-greenschist to greenschist metamorphism is synchronous with the earliest deformation in the Galore Creek area and apparently culminated prior to the next phase of deformation (Logan and Koyanagi, 1994).

7.3 Property Geology

Romios' Trek claims are underlain primarily by two lithological groups, Permian limestone and conglomerate of the Stikine Assemblage along the eastern margin of the claims, and three general packages of rocks belonging to the upper Triassic Stuhini Group: 1) a series of andesitic to basaltic volcanics, shoshonitic volcanics, and intercalated metasediments comprise most of

the central part of the claim block from Trek North to Trek South, 2) a large area of highly conductive argillite, wacke and conglomerate underlie the southwestern claims, and 3) a mixed package of marine sedimentary and volcanic rocks underlie the southernmost claims in the most rugged, mountainous area (see Figures 7 and 8). The Stuhini Group rocks have been intruded by several small Jurassic(?) plutons and local dyke swarms, thought to be coeval with the Galore Creek suite (at Trek North), as well as two large Eocene granitoid plutons on the southern claims. To date Romios' geologists have not observed any intrusions cutting the Permian limestones on the property, however, a 1.5 km long granodiorite intrusion was apparently mapped at multiple spots by the BCGS in a valley 2 km east of the Trek South zone. A careful, low-level helicopter-borne aerial reconnaissance of this valley in 2025 failed to locate any outcrops in the area of this reported intrusion.

Geological mapping of the property by Romios personnel primarily from 2008-2011 has produced a detailed geological map of the area from Trek North to the Tangle and Tundra Zones. A good portion of the Trek South area was largely ice and snow-covered during this period and it was not mapped until 2021-2022. The geology of these two areas, Trek North-Tundra and Trek South, is presented separately below.

7.4 Geology Of The Trek North Zone To Tundra Zone Area

A simplified geology map of this portion of the Trek claim block is presented below in Figure 9, taken from Close and Danz (2012); for a more detailed map of this area the reader is referred to that same report. This portion of the Trek claim block is mainly underlain by andesitic flows and volcaniclastic rocks of the upper Triassic Stuhini Group that generally trend northeasterly across the property. Along the eastern part of the claims, the Stuhini Group rocks unconformably(?) overlie a thick sequence of Stikine Assemblage limestone, volcaniclastic and polymictic conglomerate and lesser quartzite. This sequence is offset east of the claims by the major N-S trending South Scud River fault (Figure 10) and are also disrupted to the east by major northeast trending faults. To the south, a large Eocene monzonite, 3.2 km N-S by 2.6 km E-W, has intruded the Stuhini Group rocks at the southern terminus of the Trek Fault (formerly termed the "North Zone Footwall Fault" in the area of Trek North). Mapping by Romios geologists has not revealed any indication that this Eocene pluton has been cut by the Trek Fault. The Stuhini Group rocks in the northern and central parts of the claims are dominated by mafic volcanic flows, tuffs, and volcaniclastics, whereas the rocks on the southernmost claims are dominated by mixed sedimentary rocks intercalated with mafic to intercalated volcanic rocks, volcaniclastics and local limestone lenses (Figure 8). In the Trek North area, east of the Trek Fault, juxtaposed against andesitic to basaltic Stuhini Group volcanics by a north-striking, high angle fault, is a series of proximal, submarine to subaerial red volcanics. Poorly sorted, polymictic conglomerates grade upward into red, graded ash tuffs, intercalated with a suite of pseudoleucite bearing bimodal phonolites, hyaloclastites, flows and tuffs. These distinctive volcanic facies are highly localized, and thought to be proximal to a volcanic edifice.

Late Triassic to early Jurassic magmatism is represented as multiple intrusive bodies scattered across the claims. Monzonite to diorite, dominantly northeast-trending dykes and elongate stocks are spatially associated with mineralized centres. These rocks are thought to belong to the Galore Creek series of intrusions based on similar petrologic characteristics. Several Eocene quartz monzonite to granodiorite stocks are found in the area. Additionally, a series of fine-grained basaltic dykes and lesser rhyolitic dykes, younger than the aforementioned Eocene intrusions, are present as narrow dykes which cross-cut all other rocks on the property.

Of particular importance in the stratigraphy listed above, in addition to the early Jurassic to Triassic intrusions related to the mineralization, is the presence of the highly alkalic, pseudoleucite bearing phonolite volcanics (uTp1c2), intrusives (uTJpl), and related epiclastic rocks (uTp1c, uTp1c3) found immediately northwest of Trek North (Figure 9). This unusual suite of rocks is a key component of the geology and mineralizing events at the Galore Creek alkalic porphyries northwest of Trek North and the Burgundy Ridge prospect, 27 km to the southeast.

7.4.1 Fault Structures

The known faults of significance on the Trek claims and surrounding area are shown on Figure 10. Faults depicted within the claim block are largely derived from Romios' work and those external to the claims are from the BCGS digital geology map. The most important faults on the Trek claims, in terms of their potential influence on mineralization, are the Trek Fault, formerly known as the North Zone Footwall Fault along its northern portion, and the Tangle Zone Footwall Fault. The understanding of the nature and trace of these faults was developed over the course of the 2009-2011 drill programs and they are discussed in more detail below, taken largely from summaries in Close and Danz (2012).

7.4.1.1 Trek Fault (a.k.a. the North Zone Footwall Fault)

The Trek Fault, formerly the North Zone Footwall Fault, was first identified in 2009 with surface mapping and drillhole TRK09-08 cutting through the fault (Figure 10) (Chadwick and Guszowaty, 2009). The fault is largely visible on satellite imagery as a major NNE to NNW trending lineament stretching 6 km down the centre of the Trek claims. Where exposed in the Sphaler Creek valley, the fault zone is bleached, silicified, pyritized and clay altered and a 1,200 m sinistral offset was proposed by Chadwick and Guszowaty (2009); such an offset has not been investigated and corroborated by subsequent workers. The fault was originally believed to continue straight northeast from Trek Creek across Sphaler Creek and up a linear stream gully/fault linking the Lower North, Northeast and Upper Northeast zones. The 2009 mapping indicated that the northern section of the main fault was more shallow dipping (to the east) and curved to the northwest and passed by the west side of the North Zone bisecting the "Trek cirque". The NE-trending linear fault in the Lower North-Northeast Zone-Upper Northeast Zone gully was re-interpreted as a late, post-mineralization reactivation.

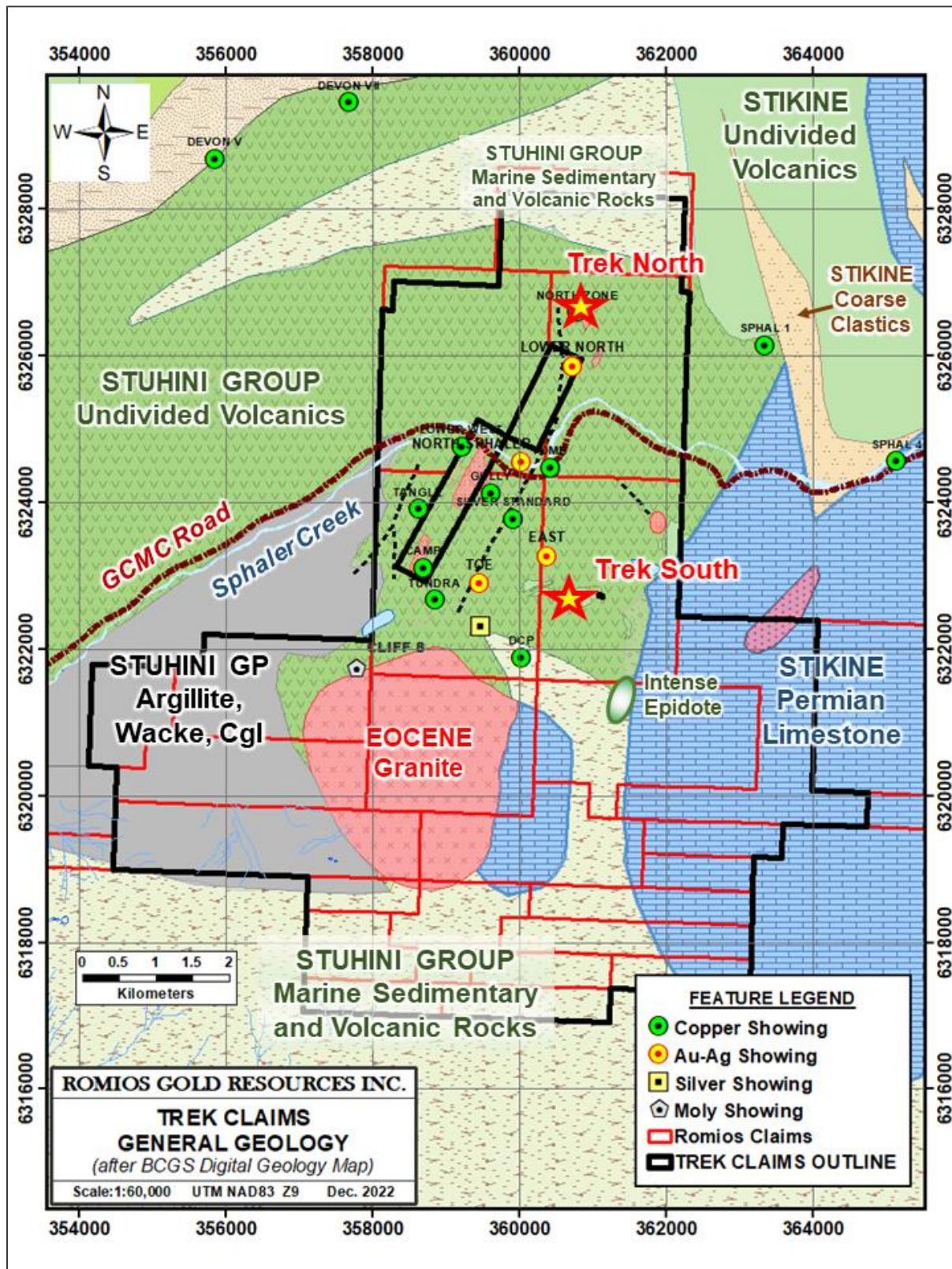


Figure 8: Major geological units in the TREK area, after BCGS digital geology map

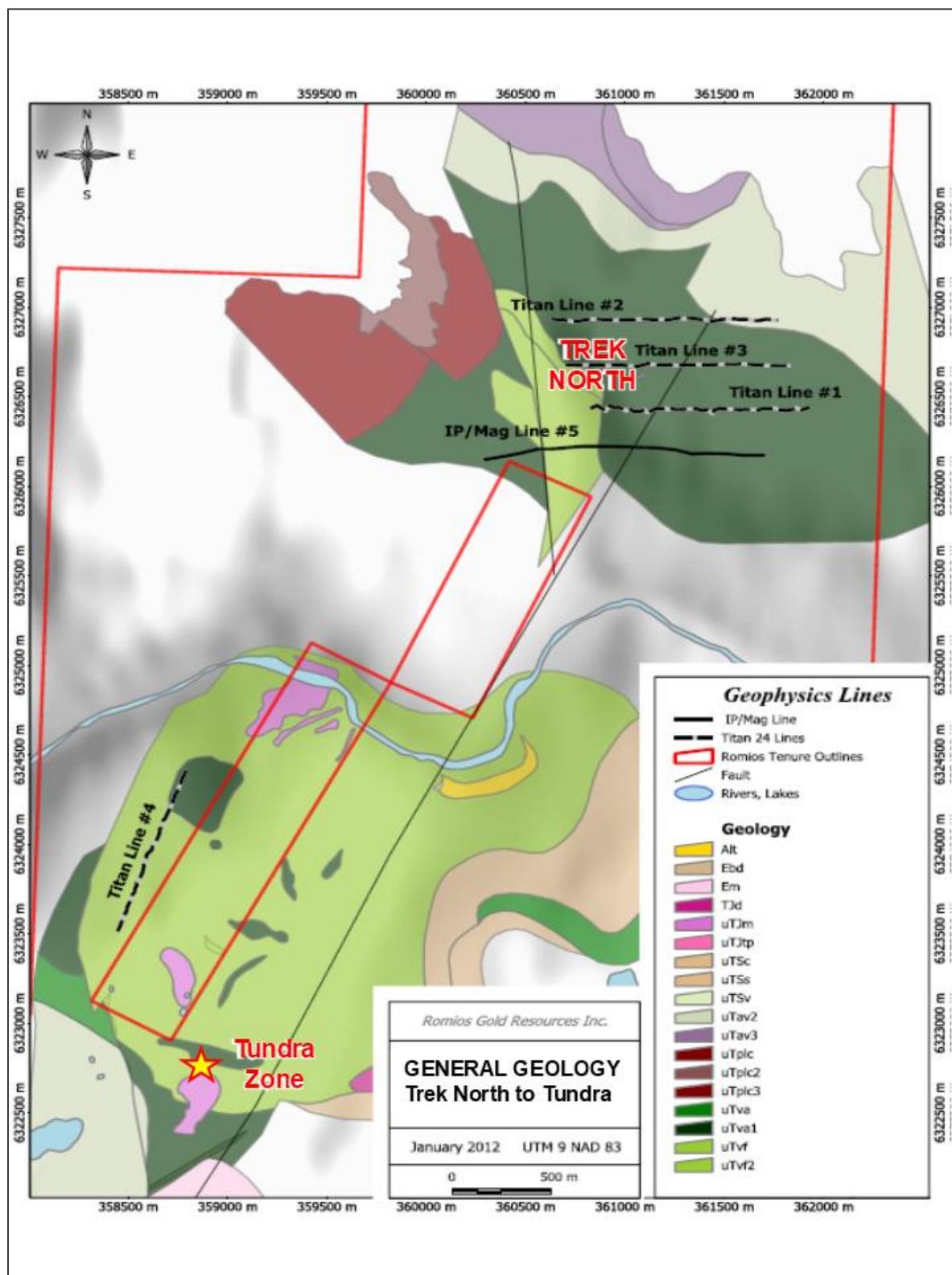
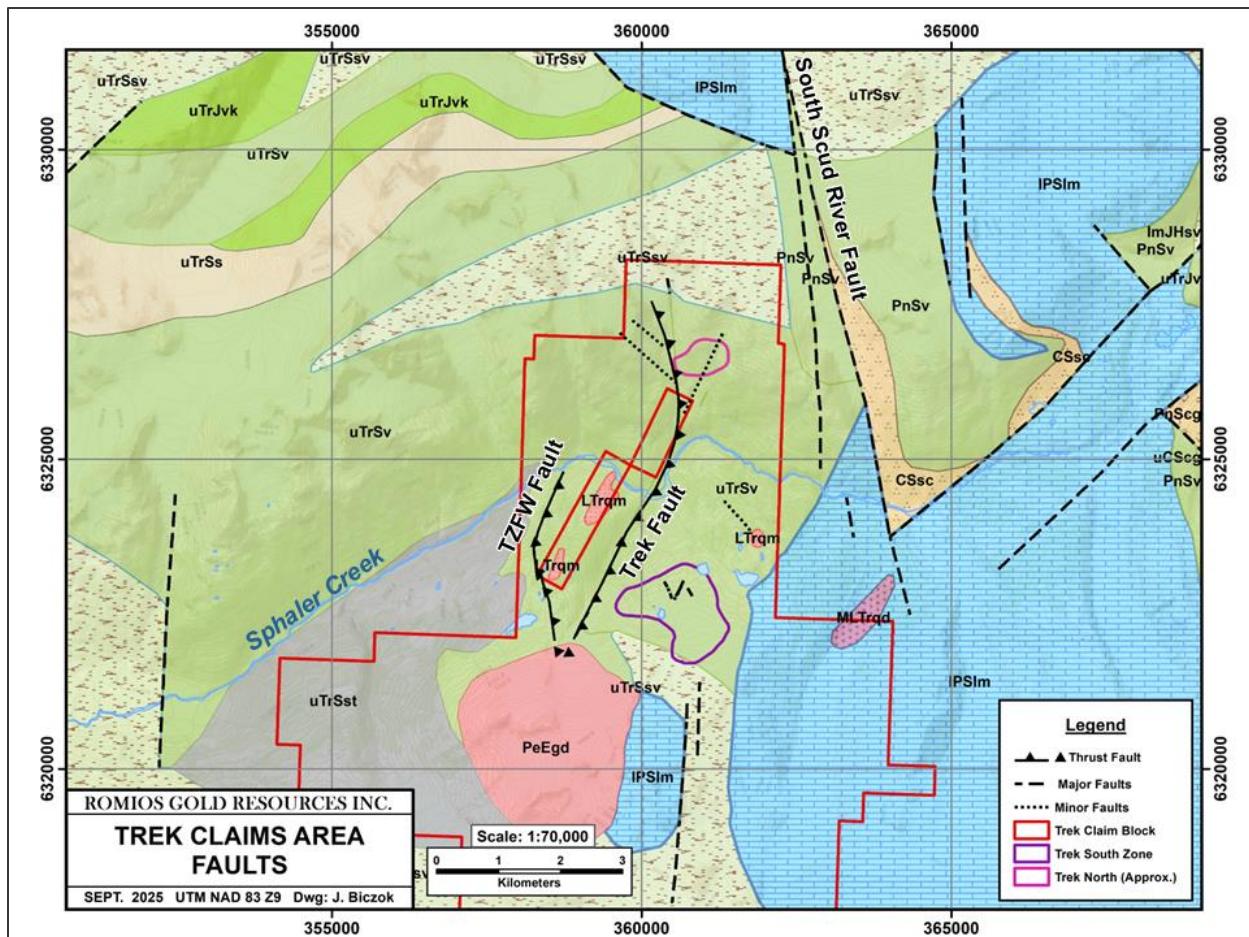



Figure 9: General geology of the Trek North to Tundra area, from Close and Danz (2012)

The Trek Fault was intersected by drilling again in 2010 with drill hole TRK10-04 ending a few metres above the fault in increasingly fractured and carbonate-altered core. In 2011, this fault was intersected again with drillholes TRK11-24, TRK11-27, TRK11-32, TRK11-33, and TRK11-35 showing both the extent and influence of its presence. The Trek/North Zone Footwall Fault separates sulphide-rich, augite-bearing andesitic flows, andesitic lapilli tuff and lesser coarse volcaniclastics of the Stuhini Group in the hanging wall of the fault, from underlying barren conglomerate, volcaniclastics and limestone of the Stikine Assemblage in the footwall (see Figure 11; *note that the apparent dip of the fault shown may be less than the true dip since the section may not be oriented completely perpendicular to the strike*). The exposed contact of the Stikine Assemblage and Stuhini Group rocks lies about 1 km east of the Trek North zone. Close and Danz (2012) report that the fault trends $018^\circ/46^\circ$ based on the orientation of the shear fabric, mapped surface extent, and intercepts within the drill holes, and varies from 10 to 18 m in width.

Figure 10: Map of the known faults in the Trek area, taken from BCGS digital map and Romios' work. TZFW = Tangle Zone Footwall Fault; Trek Fault a.k.a. North Zone Footwall Fault. See Table 3 for unit names and descriptions.

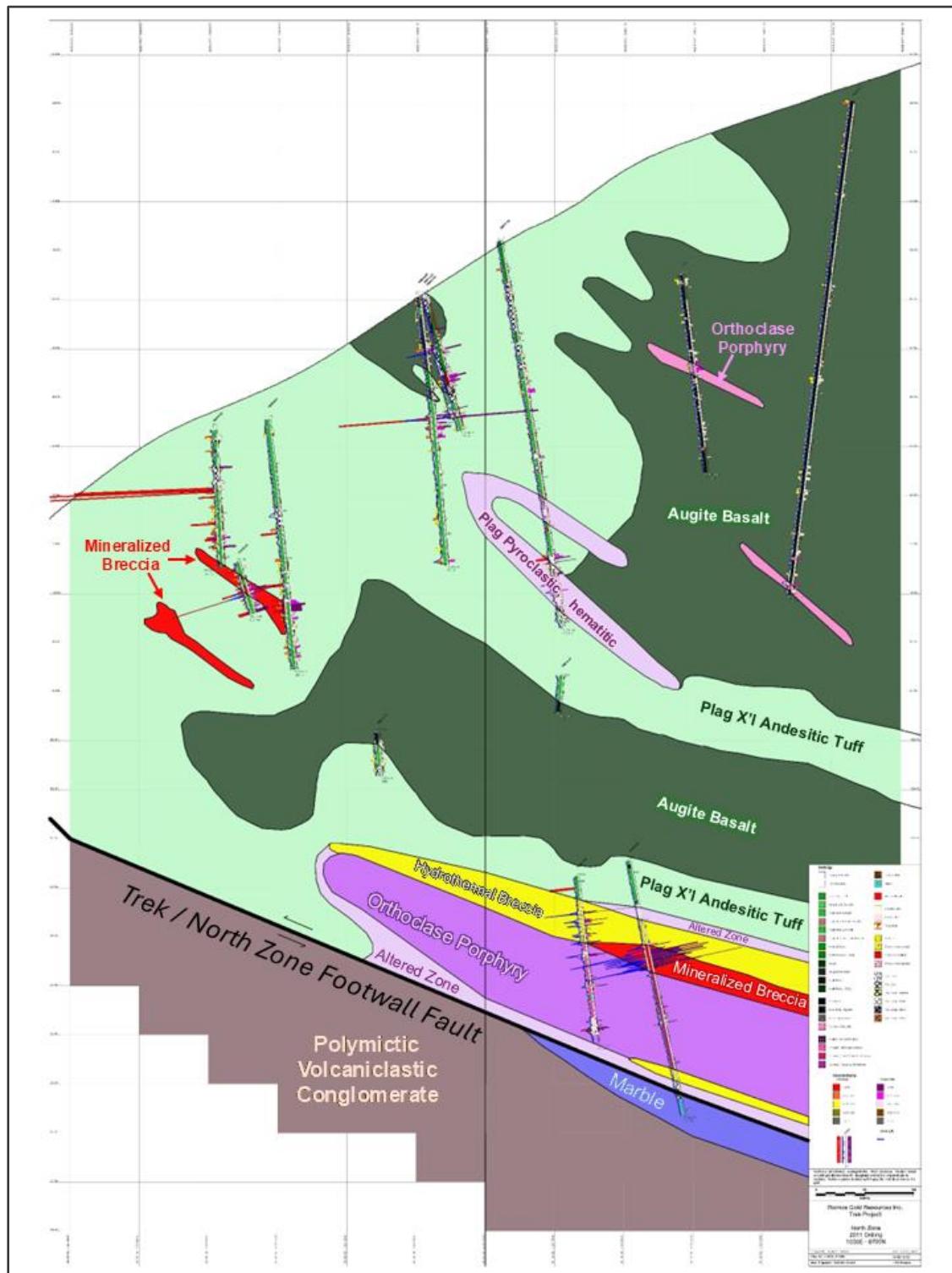


Figure 11: Trek North Drill Section 1050E-6700N, after Close and Danz (2012)

The Trek Fault is inferred to be a major structural control for hydrothermal fluids on the property, with mineralization often focused on parallel northeast-trending structures and on northwest, north-south, or east-west trending second-order structures west of the fault (Close and Danz, 2012). Northeast-trending shear zones also play an important role, as they are host to massive sulphide veins, such as the Gully Zone mineralization. The stress field responsible for the northeast-trending fault structures may reflect an early structural trend that also influences the shape of the Jurassic monzonite intrusions and the distribution of the porphyry style mineralized zones stretching from the Tundra Zone to Trek North.

7.4.1.2 Tangle Zone Fault

The Tangle Zone Fault (Figure 10) was first intersected in drillhole TZ11-01 at a depth of 132 m, varying from 0.75 to 4.75 m in width with both mylonitic and gouge/rubble components (Close and Danz, 2012). In this drill hole, the fault separates an upper altered zone consisting of a garnet-bearing, potassically and calc-potassically altered conglomerate and breccia from a lower zone of intensely potassically altered conglomerates, tuffs, orthoclase and pseudoleucite bearing dykes, and orthomagmatic breccias. Close and Danz (2012) interpreted the trend of this fault as $342^{\circ}/44^{\circ}$, and believed it to be a thrust or oblique-thrust fault due to mylonite fabric orientation and surface outcrop. Their geology map depicts the Tangle Zone Fault 250 m west of drill hole TZ11-01, following a curvilinear stream channel(s) for ~ 1.5 km. Unlike the Trek Fault, the Tangle Zone fault does not have a corresponding low resistivity signature on the 2007 airborne geophysical survey of the area and it is unclear at this point how extensive or significant this fault is and if it served as a pathway for hydrothermal fluids.

7.4.1.3 Other Faults

The ~ 60 km long, north-trending South Scud River Fault (“SSRF”) passes along the eastern side of the Trek claim block and splits into two slightly divergent structures, ~ 500 to 1000 m from the claim boundary. This major regional fault separates Stikine Group Permian limestone and conglomerate to the east from Stuhini Group rocks to the west. The east-dipping Trek Fault has been documented just 1.5 km west of the SSRF and there could well be a cross-cutting relationship between these two important structures but this remains to be ascertained.

7.4.2 Fabric

Stikine Assemblage volcanic rocks contain a penetrative fabric defined by the alignment of chlorite and biotite. These rocks tend to be tightly to isoclinally folded on an outcrop and a property scale. Stuhini Group rocks, on the other hand, generally do not contain a penetrative fabric unless they are in close proximity to major shear/fault zones.

7.5 Trek South Geology

The Trek South Zone is a postulated alkalic porphyry Cu-Au-Ag system defined by an exposed ~1.6 km E-W by 0.5 to 1.0 km N-S zone of strong to intense epidote alteration overprinted by a network of quartz-pyrite+/-chlorite-sericite veinlets generally <5 cm thick and numerous garnet-epidote skarn veins/bands (Figure 12). Initial indications of this porphyry-type system at Trek South came in 2019 with the identification of skarn-type epidote-garnet+/-pyrite veins with elevated Cu-Au values on the east edge of the Trek Creek headwall (Biczok, 2020). Subsequent mapping programs by Romios in 2021 and 2022 are the basis for the following geological description of the Trek South area. The porphyry-style alteration and mineralization at Trek South are described in Section 7.6.2.

7.5.1 Trek South Lithologies

The Trek South area is underlain primarily by Stuhini Group andesitic flows, lapilli tuff and tuff breccias with lesser basalt, intercalated in the northern areas with locally extensive, previously unmapped siltstone, calcareous siltstone, volcaniclastic to locally polymictic, pebble to cobble conglomerate and sedimentary breccia. The sedimentary sequence includes at least three horizons of bioclastic limestone, up to 17 m wide, in the northeastern section of the Trek South area referred to as the “northern” or “main skarns” (Figures 12 and 16). The limestones are largely skarnified and often completely altered to medium-grained red garnet and green epidote. In the eastern part of the map area, these volcanics and sediments are in contact with a ~300 m wide swath of coarse volcaniclastic conglomerates which are then overlain to the east with the start of an extensive Permian limestone member of the Stikine Assemblage (Figure 7). The various rock types found at Trek South are shown on Figure 12 and described below.

STUHINI GROUP

BASALT: A volcanic rock that is noticeably darker and more mafic than the andesites occurs in the NW of the mapped area and is assumed to be basalt. It is dark grey in colour, medium-grained, containing visible plagioclase grains 1-2 mm long and hornblende (?) grains <1 mm, with local vesicles filled with red to white calcite. It is also moderately magnetic and generally much less epidotized than any nearby fragmental units or andesite. The basalt is locally tuffaceous, as defined by somewhat diffuse bands of pitted surface alternating with smooth, massive surfaces. In some areas, the basalt is intercalated with apparent andesite flows, each on the order of a few metres in thickness. Both the basalt and andesite locally exhibit fracturing at 120 degree angles, forming multi-faceted, columnar-like planar surfaces.

ANDESITE: The andesite varies from massive flows to coarse fragmentals thought to be tuff breccias and possible flow breccias with intercalated, reworked volcaniclastic sediments. It is generally lighter in colour than the basalts, often with a purple tinge to the overall grey colour. The tuff breccias consist of 30-40% angular clasts of andesite <1 to 10 cm across with local minor input of other volcanic or sedimentary fragments. These tuffs grade into volcaniclastic

conglomerates with up to 75% fragments that are typically more rounded and more heterolithic than the tuff breccias and locally include a high percentage of fine-grained intrusive rocks. The conglomerates are also weakly to moderately magnetic and may have local minor epidote alteration of the clasts. Fragments in the tuffaceous units are often preferentially and pervasively epidotized but the epidote can also, less frequently, replace the matrix more than the fragments, or both components equally. Large masses of epidote alteration up to 1 m in size are locally common in the andesites and their related volcaniclastic units. In some areas, the fragmental andesites appear to be a flow breccia rather than tuff, having a high percentage of fragments that are quite angular, tightly packed, poorly sorted, black and very fine-grained.

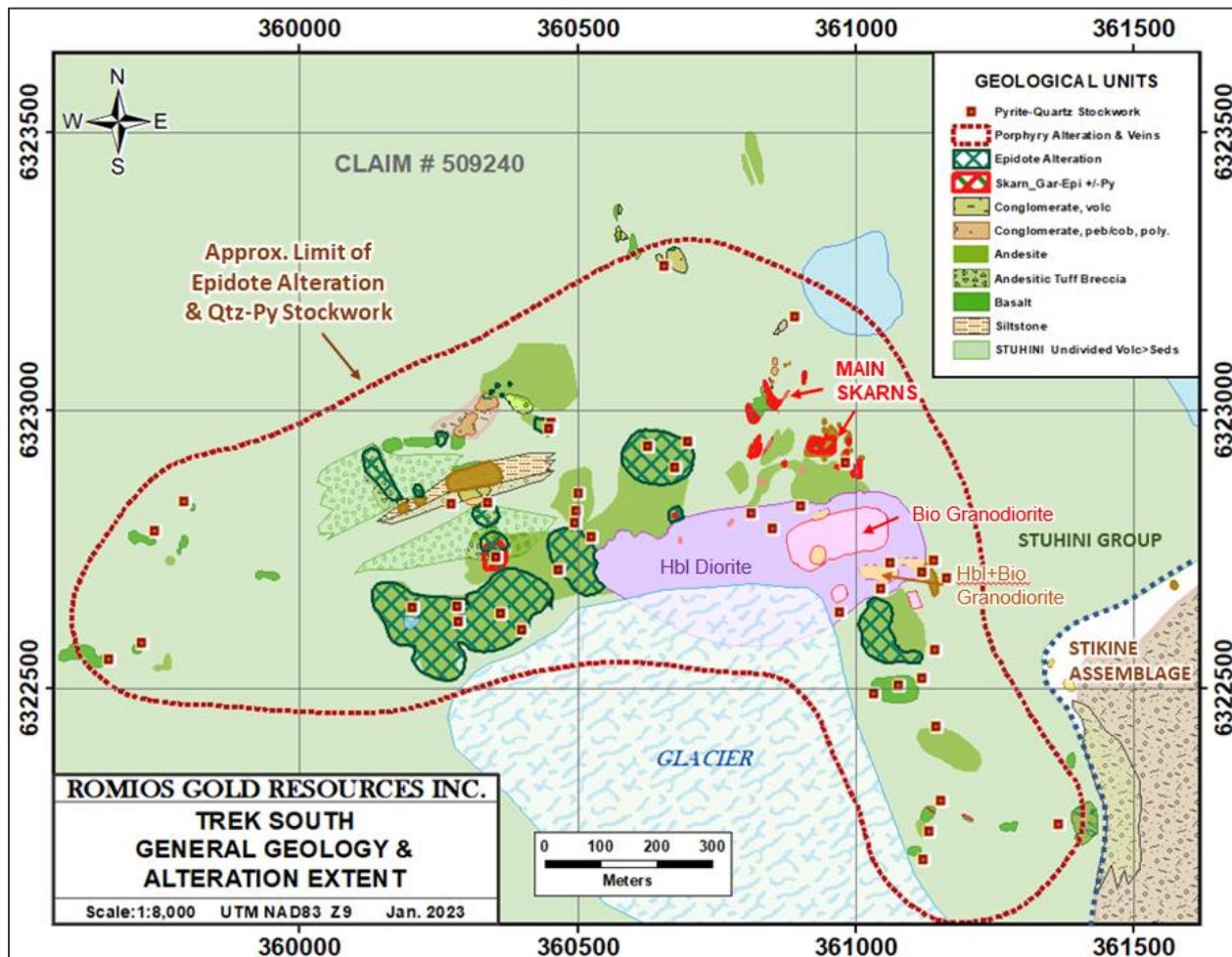


Figure 12: General geology, alteration and veining map of the Trek South area as of 2023

DEBRIS FLOWS: An excellent example of a debris flow was found along the southern margin of a large band of volcaniclastic conglomerates in the northwest sector of the map area. It consists of 40% angular volcanic fragments, 10-100 cm across, in a fine-grained, grey volcaniclastic matrix.

SILTSTONE – CALCAREOUS SILTSTONE - QUARTZITE: Several large outcrops of siltstone are found in the NW part of the map area and calcareous varieties are abundant in the NE sector. The non-calcareous siltstones are very fine-grained, weather off-white to light beige, and locally have thin conglomerate beds. This unit is in sharp contact with the mafic volcanics in the northwest section of the map area.

In the skarnified area within the northeast section of the map area, north of the east end of the diorite-granodiorite pluton, the siltstones are predominantly fine-grained, light grey and weakly bedded, with lesser siliceous members, and are intercalated with minor beds of white quartzite. Calcareous siltstone predominates across several large outcrops on the east side of the metasedimentary area and are locally interbedded with limestone beds. The siltstone, limestone and quartzite are commonly skarnified to massive garnet-epidote assemblages +/- pods of gossanous pyrite in this area.

LIMESTONE: Mappable discrete beds of limestone occur in the “Main Skarn” areas in the northeast portion of the map area where they are 12-17 m wide and exposed for strike lengths of up to 50 m. The limestone is largely skarnified; only a 1-2 m wide zone is relatively unaltered in the thickest limestone skarn. The limestone is white, fine-grained and massive to highly bioclastic where fresh and grades through a “web-like” texture of epidote alteration around fossil fragments into massive garnet-epidote skarns. The limestone is flanked by conglomerate +/- quartzite on its western side at both the northernmost and westernmost skarn outcrops and the conglomerate is also moderately to highly skarnified. The eastern margins are not clearly exposed.

CONGLOMERATE - SEDIMENTARY BRECCIA: The locally skarnified sedimentary sequence that extends from ~30 m to >340 m north of the east end of the diorite-granodiorite pluton includes at least 2 occurrences of conglomerate and/or sedimentary breccia. The breccia is essentially a matrix-supported conglomerate of 70-80% polymictic, angular clasts averaging 2-5 cm in length, dominated by basalt and limestone. It is weakly magnetic and is differentiated from the volcaniclastic conglomerates by the abundance of limestone and other sedimentary clasts and the lack of nearby tuff or flow breccias and is strongly skarnified in some outcrops.

STIKINE ASSEMBLAGE

LIMESTONE: The extensive outcrops of limestone east of the current map area have not been mapped in any detail by Romios or previous operators but they were briefly examined in 2021 and 2022. The limestones are generally thick-bedded on a scale of a few tens of centimetres, weather light grey, and commonly have brown, iron-stained, softer patches or layers that locally contain various fossils. The limestone forms large escarpments along the east side of the claims, immediately east of the Trek South prospect (Figures 8 and 10).

CONGLOMERATE: In the eastern portion of the map area, east of the 600 m wide, zoned diorite-granodiorite pluton, numerous extensive outcrops of conglomerate are found. These

conglomerates are locally dominated by clasts of limestone, especially in the outcrops farthest east and closest to the large outcrops of Stikine Assemblage limestone, consequently they are assumed to be part of the Stikine as well. The conglomerate is often interbedded with siliceous, weakly pyritic quartzite and thin, black limestone beds 5-10 cm thick. It is polymictic, varies from matrix- to clast-supported and the dominant clast size varies from pebble to boulder with a large percentage of cobble size clasts. The clasts are primarily metasediments such as siltstone, arenite and conglomerate.

QUARTZITE: Large outcrops of quartzite are found ~300 m southeast of the aforementioned diorite-granodiorite pluton. The quartzite typically weathers light beige, is light grey on fresh surfaces, has ~1% disseminated fine-grained pyrite, and contains ~5% black limestone beds that are 5-10 cm thick, deformed and dismembered.

SILTSTONE(?): Several outcrops of a fine-grained, fairly siliceous, light grey, moderately hard, featureless unit occur south of the turquoise-blue lake immediately east of the mapped area in Figure 12. There are no visible bedding or other features to help determine the type of lithology and for now this unit has been presumed to be either a massive siltstone or perhaps a dacite.

INTRUSIONS

DYKES

Special attention has been paid to some of the granitoid dykes found at Trek South in recent years as it was expected that some of these might be offshoots of the suspected buried intrusion underlying the Trek South apparent porphyry system. In August 2025, a potentially important dyke was discovered and examined by the authors; it is believed to be contemporaneous with the mineralizing and hydrothermal alteration event at Trek South (Biczok, 2025) and is described below.

FELDSPAR-BIOTITE PORPHYRITIC MONZONITE: A highly significant dyke was found in August 2025, within metres of the front of the north-flowing glacier that abuts the southern edge of the Trek South prospect and this dyke was probably only exposed in the last two years by the receding of the glacier. The dyke is 2-3 m wide, strikes 060° and dips close to vertical, and most importantly, it clearly cuts across the strong epidote alteration visible in the host volcanics (Photo 3) and is itself then cut by the same quartz-pyrite veinlets that form a network across the Trek South prospect. The dyke consists of ~20-25%, fairly fresh white feldspar crystals 1-4 mm long and 1-2 mm wide, plus 3-5% euhedral biotite phenocrysts, 1-3 mm across, in a fine-grained, fairly hard, light grey, moderately sericitized groundmass, composed of feldspar>quartz with trace magnetite. This dyke rock is assumed to be a monzonite or quartz monzonite. Two samples of the cross-cutting quartz-pyrite veinlets were sampled and returned anomalous levels of silver, 9.2 to 14.1 g/t Ag, and lead, 205 ppm to 322 ppm Pb. Samples of the dyke were collected for lithogeochemical and petrographic analysis and; results are pending at the time of this report.

The BCGS also collected samples for lithogeochemical analysis and age-dating; those results are also pending.

Photo 3: Contact (red line) between Fd-Bt porphyritic dyke and epidotized volcanics at toe of main glacier on Trek South

At the time the aforementioned dyke was discovered, a number of light-coloured dykes trending roughly NE-SW were also noticed beginning ~400 m to the southwest on the very steep, rugged mountainside that begins abruptly at the southwest corner of the Trek South area. One of these dykes was followed by helicopter for 700 m upslope to a mountaintop exposure where it was mapped and sampled (Biczok, 2025). This dyke is very similar to the previous dyke but contains ~5% visible quartz and its feldspar phenocrysts are highly sericitized. If the two dykes described here can be age-dated, analysed and determined to be part of the Galore Creek suite it will provide significant support for the buried porphyry intrusion being modelled at Trek South.

PEGMATITE DYKES: A minor number of simple feldspar>quartz pegmatite dykes up to ~1 m wide occur throughout the exposed Eocene pluton in the Trek South area. Locally they contain small pods or vug fillings up to 10 cm wide of pyrite and lesser molybdenite.

FELSIC DYKES (Porphyritic Granodiorite): At least three fine-grained, white felsic dykes were mapped in the vicinity of the most well developed skarns north of the diorite-granodiorite pluton.

Although the three in-place dykes occur either adjacent to, or cross-cutting, the skarn zones, there is no evidence that skarnification increases towards these dykes and no skarn-type alteration or mineralization has been found in them. A sample of one such dyke was submitted to the geochronology laboratory at UBC in August 2022 and returned an age-date of 51.77 ± 0.31 Ma, virtually identical to the 51.65 ± 0.32 Ma age of the zoned diorite-granodiorite pluton found in the southeast portion of the Trek South map area. The felsic dykes typically contain 0% to ~5% feldspar phenocrysts <5 mm and a few % biotite phenocrysts, 1-3 mm, in a fine-grained groundmass of feldspar>quartz. The dykes range from 3 m to 5 m in width and have been traced in outcrop for 45 m. All three dykes in outcrop trend NNE.

EOCENE PLUTON – dated at 51.65 ± 0.32 Ma

HORNBLENDE DIORITE: This intrusive phase is the dominant rock type in the ~600 m E-W by >120 m N-S pluton in the Trek South area. It is generally homogenous and equigranular, medium grey in colour, and consists of ~40% hornblende grains 1-3 mm long and ~60% fine-grained interstitial feldspar. There is no obvious visible quartz present. This diorite is usually weakly to moderately magnetic, and like all phases of the pluton, epidote alteration is nil to very weak. The diorite is locally cut by well-developed quartz-pyrite-chlorite stockwork-type veinlets but these are generally less abundant than in the surrounding volcanic rocks and have a different metal signature (lower Bi, Te, and possibly Au and Cu on average, higher Mo; See Section 7.6.2.1). The diorite commonly has minor, fine-grained pyrite disseminated throughout and/or as thin fracture coatings. The margins of the diorite intrusion are often heavily included by various intrusive and volcanic xenoliths and cut by leucocratic to mesocratic dykes of varying compositions including some pegmatites. There is no indication that any of the alteration seen in the Stuhini Group rocks increases towards this pluton, rather the pluton appears to have cut the altered volcanic rocks.

HORNBLENDE-BIOTITE GRANODIORITE: This phase of the pluton is transitional from the hornblende diorite and varies from biotite>hornblende to hornblende>biotite varieties. It forms a series of exposures arranged in a roughly circular pattern around the east-central biotite granodiorite core of the pluton. It is similar in appearance to the core but lighter in colour and contains about 20-30% mafics ranging from 5-25% biotite flakes 1-3 mm long in addition to 5-25% hornblende. The majority of this phase is ~equigranular but it is locally coarse-grained (3-4 mm) and verges on being porphyritic. The unit is also moderately magnetic and typically has minor fine-grained disseminated pyrite throughout as well as locally abundant pyrite-quartz stockwork veinlets.

BIOTITE GRANODIORITE: This would appear to be the most siliceous, most differentiated phase of the pluton and it is concentrated in a ~200 m x 75 m oval area in the east-central part of the pluton, as well as occurring in a 20 m wide dyke cutting the host andesites and a small plug near the southeast margin of the pluton. It is distinctly whiter and more leucocratic than the other intrusive phases and consists of ~10-30% biotite flakes up to 3 mm across, in a white to light grey, fine-grained (<1-2 mm) feldspar dominant groundmass with up to 5-10% quartz. Trace to minor

fine-grained pyrite is disseminated throughout as are scattered pyrite-quartz stockwork type veinlets, mainly subvertical. This phase is notable for its prominent and well developed flow-banding caused by an alignment of the minerals into biotite-rich and poor bands a few cm to tens of cm wide. In one large outcrop, the flow bands form a circular pattern ~8 m across, perhaps a “pipe-like” conduit of the granodiorite intruding up through the diorite.

This phase of the intrusion was age-dated on Romios’ behalf in 2023 by the Pacific Centre for Isotopic and Geochemical Research at The University of British Columbia (UBC). The age was determined to be Eocene, 51.65 ± 0.32 Ma (C. Wall, pers. comm.), and it is therefore considered part of the Major Hart intrusive event.

7.5.2 Trek South Structure

Bedding or flow contacts suitable for measuring accurate strikes and dips are rare in the volcanic rocks at Trek South and therefore these measurements are concentrated in the area underlain by metasediments in the northeast of the 2022-23 map area, north of the east end of the diorite-granodiorite pluton seen on Figure 12. In this area the bedding strikes fairly consistently NNW-SSE with a dip close to vertical, $\pm 10\text{-}15$ degrees. The strata in the west part of the map area are at odds with this NNW-SSE trend, however, they strike ENE-WSW, based on one bedding measurement and several well-defined contacts between the various volcanic and sedimentary units. The discrepancy between the strike direction of rocks in the east and west parts of the map area requires further detailed mapping of the intervening ~400 m and more detailed mapping of the western area.

No significant faults have been encountered in the Trek South area to date. Numerous small, parallel, NNW-trending lineaments are visible on satellite imagery of the area, roughly parallel to the mapped bedding direction in the area of the skarnified metasediments. These lineaments are assumed for the most to be due to glacial scouring of the softer beds. Several small NNE to NE-trending lineaments cross-cut this general trend but do not appear to have caused any significant offset in the stratigraphy.

7.6 Mineralization

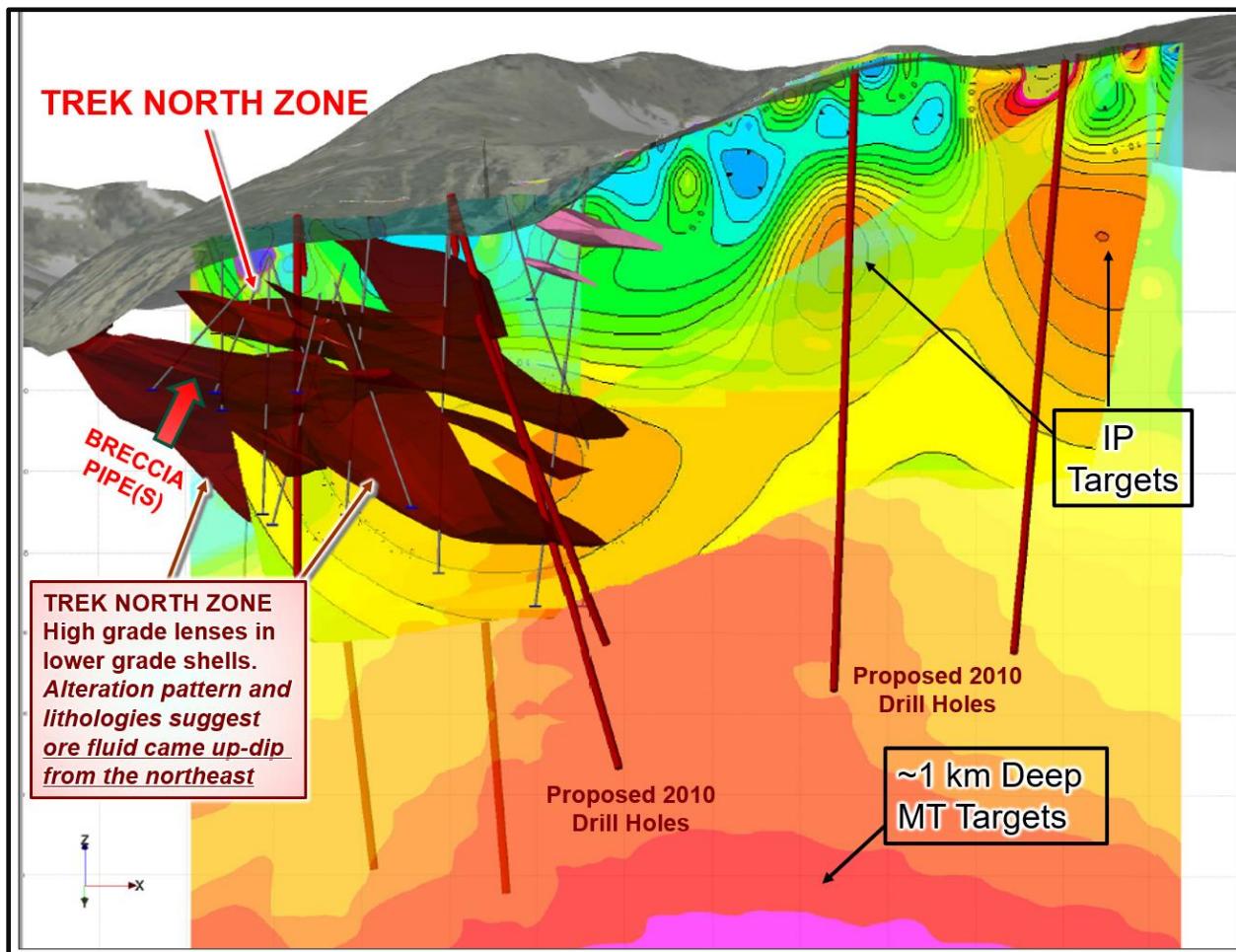
Numerous mineralized showings and several different styles of mineralization have been discovered on the Trek property since exploration first began here in 1957. While the main prospects of interest remain the porphyry-style occurrences at Trek South and Trek North, potentially significant showings of other deposit types are found across the property, e.g., the probable volcanogenic massive sulphides (VMS) of the Kuroko or Eskay Creek variety at the Toe Zone, and the sulphide veins at the Gully Zone. The main showings are grouped by deposit type, beginning with the alkalic porphyries, and described individually below.

7.6.1 Trek North Zone (including the Northeast and Upper Northeast subzones)

The Trek North Zone is an alkalic porphyry-type deposit hosted mainly in augite-bearing andesitic flows, andesitic lapilli tuff and lesser coarse volcaniclastics of the Stuhini Group overlying a highly fractured, intensely altered, bleached to dark grey, shallow-dipping fault zone. Originally known as the North Zone Footwall fault and now the Trek Fault, this structure is believed to have thrust the overlying mineralized Stuhini Group rocks westward over the Stikine Assemblage (Figure 11). Below this fault lies barren, polymictic volcaniclastic conglomerate, intersected in DDH TRK11-27, and altered limestone ("marble"), intersected in DDH TRK11-32, which contains little to no mineralization. These sediments were assigned to the Stikine Assemblage by the company geologists at that time. Alteration and mineralization above this fault are concentrated within and along the flanks of monzonite dykes, in a swarm of breccias exposed in the cliff face, and at depth in a sub-horizontal breccia zone or in a large orthoclase porphyry body intersected in the last few holes of the 2011 drill program. The breccias exposed on the cliff face are known as the "upper breccia zone", and the breccia intersected at depth in the 2011 drilling is known as the "lower breccia zone".

In outcrop, the largest of the upper breccia bodies exhibits a circular, fault-bounded pattern, with strong secondary copper mineral staining both within the breccia and forming a halo around it in the surrounding volcanics. Breccias cut both the monzonite dykes and the host volcanics, post-dating all intrusive and volcanic units in the vicinity with the exception of the Eocene basaltic dykes. The breccias vary in size from 3 m to 15 m in diameter, and appear to form an anastomosing swarm, the largest of which measures 12 m by 25 m. They are well mineralized with primary chalcopyrite, pyrite and bornite mineralization found as coarse, clotty matrix fill, and the outcrops are heavily coated with secondary malachite, chalcocite and azurite staining. The largest of these breccias is easily identifiable in a major cliff face bounding the western edge of the North Zone due to the strong malachite and iron oxide staining. Large clots of massive pyrite up to 30 cm and chalcopyrite up to 5 cm are seen in the silica-rich matrix. Clasts are commonly bleached, dusty, white to pale green and clay altered with an uncertain protolith, but inferred to be predominantly volcanic. Black chalcocite coats much of the high-grade components in the core of the breccia where chalcopyrite predominates over pyrite, whereas jarosite-limonite iron oxide coatings predominate at the contacts with the host rocks, where pyrite exceeds chalcopyrite.

Grab samples from the highly mineralized breccia pipes exposed in a cliff face at the North Zone have assayed up to 7.04% Cu and chip samples have assayed up to 3.83% Cu, 1.19 g/t Au and 15.9 g/t Ag over 1 m lengths and up to 3.94% Cu over 5 m lengths. The average grade for 21 samples from an area measuring 62 m x 20 m area was 1.07% Cu, 0.1 g/t Au and 5.18 g/t Ag (Bernales et. al., 2008).


The lower breccia zone was discovered during the 2011 drilling in hole TRK11-32 which intersected 22.56 m of 1.10% Cu, 0.05 g/t Au and 18.46 g/t Ag in a strongly potassic altered breccia zone along the top of a shallow-dipping orthoclase porphyry intrusion about 90 m thick and floored by the underlying Trek/North Zone Footwall Fault. This lower breccia was subsequently targeted by drillholes TRK11-33, -34, and -35 in an effort to determine the extent and orientation of the breccia. It was also intersected in an earlier hole, DDH TRK11-24. All of these holes intersected the breccia zone with varying degrees of mineralization, e.g., Hole TRK11-24 intersected 27.13 metres of 0.66% Cu, 0.01 g/t Au and 8.87 g/t Ag while hole TRK11-35 intersected ~67 m of breccias with only minor mineralization (Close and Danz, 2012). Unlike the upper breccia zone, this zone displays a sub-horizontal, laterally continuous sequence that is clipped by the North Zone Footwall (Trek) Fault to the west, clipped by a large porphyry body along the southeast margin, and thickens to the northeast. Thicknesses vary from 8 metres to the west to >50 metres to the Northeast/East. The lower breccia zone cuts the plagioclase-phyric volcaniclastic host and appears to either cut or be intercalated with the orthoclase porphyry, which together post-date all other volcanic units in the area. The breccia is well mineralized with primary chalcopyrite, pyrite, tetrahedrite and pyrrhotite located primarily in clasts and scattered throughout the matrix. Assay results show high grades of Cu-Ag for the northeast and east side of the drilled lower breccia zone, with good Au grades located in the west end of the zone. The lower breccia zone displays ductile, penetrative fabric foliation that increases with intensity near the North Zone Footwall Fault in TRK11-33.

Mineralization at the Northeast Zone portion of Trek North occurs within and flanking a northeast trending monzonite to monzo-diorite dyke swarm cutting a host rock largely composed of augite-phyric coherent volcanics. Clotty to disseminated malachite, chalcopyrite and pyrite is seen at the contact of the dykes and the host rock. Through-going vein and fracture controlled chalcopyrite-malachite-pyrite is also seen within and haloing the dykes, and is associated with silica-albite-epidote-chlorite alteration with locally weak k-feldspar alteration and magnetite veining. Locally, calc-sodic alteration is very intense, and albite alteration forms massive white, dusty veins up to 20 cm in width. The area is structurally complex and intensely sheared, but the main structural controls on mineralization appear to be northeast-southwest, and east-west. Exposure is limited to a 350 m long, north-trending gully, with the best mineralization at the Northeast Zone measuring 100 m by 50 m.

Overall, the mineralization intersected by drilling at Trek North so far consists of three shallow-dipping, moderate-grade bodies surrounded by a low grade envelope outlined by the 2008-2009 drilling over an area approximately 720 m x 260 m and open to the south, east, north and at depth (Desautels, 2011) (Figure 13). After the 2010 and 2011 drill campaigns the mineralization was considered open to the northwest, north and southeast (Close and Danz, 2012). Deep drilling of the TITAN 24 MT low resistivity anomaly below the mineralized area was proposed but never undertaken as these holes would need to be >1 km long to reach this geophysical target.

7.6.1.1 Alteration

Overall, the alteration at Trek North is dominated by potassic, calc-potassic and calc-sodic assemblages within the mineralized zones, with carbonate-rich propylitic assemblages and MACE (Magnetite, Albite, Chlorite and Epidote) alteration dominant in distal zones. Late, high-level sericitic assemblages overprint earlier alteration and mineralization to the south and southeast of the drilled area.

Figure 13: Romios' compilation of the 2010 IP-MT survey results and drilling with modelled mineralized shells. (Looking approx. north. Tick marks on left side are thought to be the 100 m marks).

At the Upper Northeast sub-zone portion of the Trek North Zone, the alteration mineralogy includes vein-controlled to pervasive pink k-feldspar and thick, east-west trending, magnetite veins with lesser epidote and chlorite veining. Mineralization is seen as clotty to vein controlled chalcopyrite, malachite, and chrysocolla, commonly in east-west, north dipping veins. Quartz veins are locally present as chalcopyrite bearing, centimetre-scale veins with centre-line

sulphides, and are stable in potassic assemblages. Drillholes through the Upper Northeast sub-zone, TRK10-05, -06, and TRK11-28, indicate barren rock at depth and to the east.

Calc-potassic alteration of the volcanic rocks by actinolite, diopside, very fine-grained to shreddy biotite, albite and chlorite is seen as pervasive green-grey to green-brown altered rocks. White mica, carbonate and clay selectively replace feldspars. This style of alteration appears to be the result of an early, pervasive event resultant of hot, oxidized magmatic fluids and is associated with low grade, disseminated mineralization.

Calc-sodic alteration is consistently seen to cut the calc-potassic alteration. It is found as bleached white to light green patches and interfingering zones overprinting earlier alteration with albite, actinolite and diopside dominant assemblages. This assemblage appears to be magnetite destructive and is believed to be a result of hot, ore-bearing hydrothermal fluids coeval with main stage, vein and fracture-controlled mineralization.

Potassic alteration consists primarily of biotite occurring as light purple-pink to dark purple-black veins in altered rocks, accompanied by variable amounts of secondary silica. This is interpreted to be a result of late-stage mineralizing fluids, which can contain large amounts of chalcopyrite. This alteration is most commonly cut and overprinted by calc-sodic alteration and is present in the augite-phyric basalt flows and pseudoleucite-bearing, orthoclase porphyry intrusions. Locally, these potassic veins cut through all alteration assemblages, indicating a nearby, late-stage mineralization event.

7.6.2 Trek South Mineralized Zone

Initial indications of a porphyry-type system at Trek South came in 2019 with the identification of skarn-type epidote-garnet+/-pyrite veins with elevated Cu-Au values on the east edge of the Trek Creek headwall (Biczok, 2020). A subsequent 2020 program of rock sampling and hyperspectral analysis identified possible porphyry-type alteration minerals, such as high temperature white mica and epidote at Trek South, as well as a 1 km long zone stretching from the Toe Zone to the south side of the Tundra Zone (Ryan, 2021). This alteration assemblage overlies the northern half of a circular aeromagnetic high ~800 m across, thought to reflect a magnetic pluton and/or potassic alteration zone at depth, making this area an attractive target. Subsequent mapping programs by Romios in 2021 and 2022 are the basis for the following description of the Trek South Zone (Biczok, 2021; Biczok, 2023) (see Figures 12 and 14).

The Trek South Zone is a postulated alkalic porphyry Cu-Au-Ag system that has never been drill tested. It is defined by an exposed ~ 1.6 km E-W by 0.5 to 1.0 km N-S zone of strong to intense epidote alteration, cut by numerous epidote-garnet skarn-type veins and bands up to ~60 cm in width, and overprinted by a network of quartz-pyrite+/-chlorite-sericite veinlets generally <5 cm thick. The epidote locally contains dark grey copper sulphides and/or chalcopyrite and approximately one-half of the quartz-pyrite veinlets sampled to date contain significantly elevated levels of Cu-Au-Ag+/-Bi, Te, Mo and W (Biczok, 2021; Biczok, 2023). The stockwork veins

are described in more detail below. The full extent of the Trek South zone is obscured along its southern margin by a north-flowing glacier that hosts several medial moraines carrying Cu-Ag+/-Au mineralized till. One such mineralized moraine traversed in 2025 emanates from a sub-glacial ledge approximately 600-700 m south of the Trek South exposures, potentially expanding the system size substantially.

7.6.2.1 Quartz-Pyrite Stockwork

A stockwork of quartz-pyrite veinlets overprints the majority of the epidote alteration at Trek South and extends beyond it in scattered outcrops to the north, southeast and west (Figure 12). The stockwork veinlets are variably developed, typically 1 to 6 cm wide at various angles, compositions and densities (Photos 4 to 7). The number of veinlets can vary from <1 to 12 veins per metre. Minor chalcopyrite and bornite occurs in about half of the veins sampled to date and appreciable assays for Cu, Au, Ag and other metals of interest have been returned from these veins. Assays of the mineralized veins range from 0.2 to 1.7 g/t Au, 0.1 to 1.83% Cu, and 2.3 to 257 g/t Ag (silver averages 6.6 g/t Ag, not including a 257 g/t Ag sample). Some veins, primarily those at the approximate centre of the altered-veined zone, also have high levels of tellurium (\leq 317 ppm Te), tungsten (\leq 0.12% W), molybdenum (>500 ppm Mo) and bismuth (\leq 669 ppm Bi).

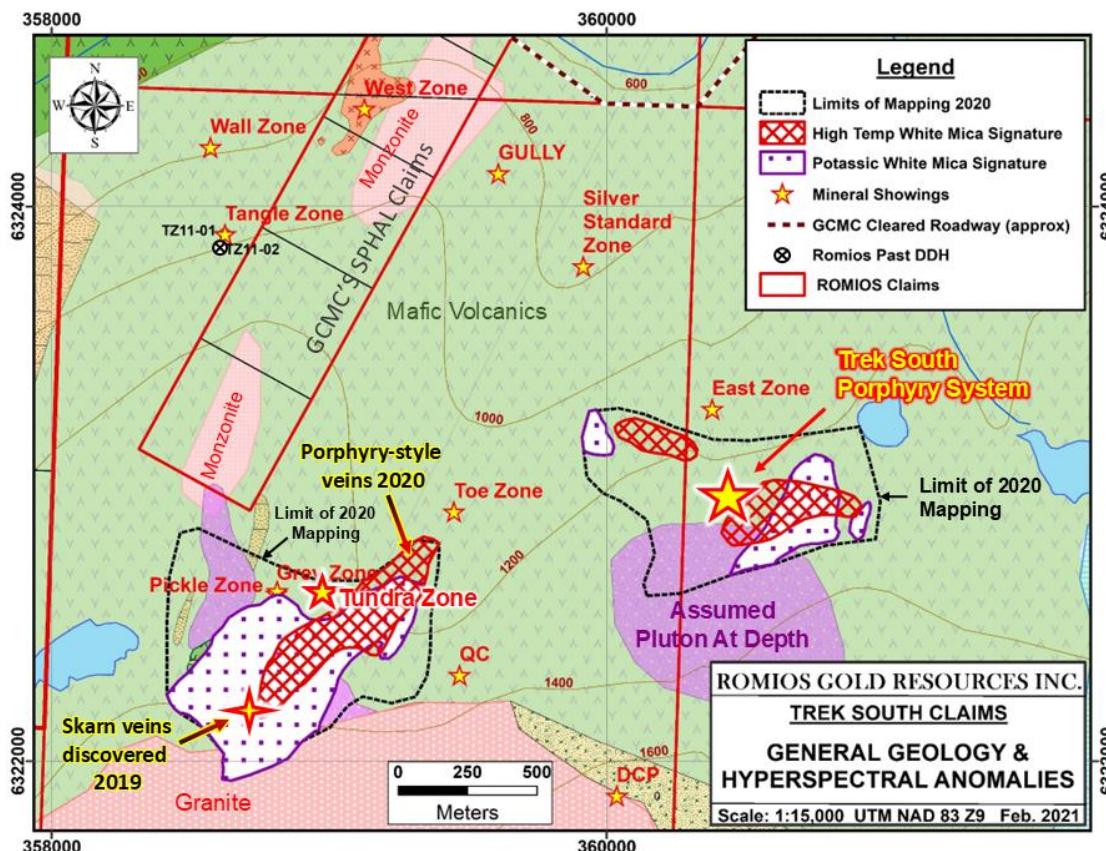


Figure 14: General geology of the southern Trek claims and 2020 hyperspectral anomalies


Photo 4: Quartz-pyrite vein cutting epidote band. Red pencil magnet for scale is 12 cm long

Photo 5: Fairly typical quartz-pyrite stockwork. Hammer for scale is 58 cm long

Photo 6: Semi-massive pyrite vein, only minor quartz

Photo 7: Chlorite-rich portion of a Qtz-Py vein, note bleached, pyritized margins

Veinlets are most abundant in the volcanic rocks and are less common in the sedimentary strata but they have been found in the skarnified sediments north of the zoned diorite-granodiorite pluton. They are typically white, massive quartz with 5-10% euhedral to subhedral cubic pyrite grains a few mm across (Photos 4 and 5). Similar looking veinlets occur in the Eocene diorite-granodiorite pluton as well, primarily in the eastern portion but these have a different orientation relative to the veins in the surrounding Stuhini Group rocks and they are assumed to be a much younger generation. Limited sampling of the veins in the intrusion suggests that they have a different metal signature than those outside, i.e., lower Bi, Te, possibly lower Cu and Au, higher Mo, (internal Romios report by J. Biczok, 2023) but more work is required to state this categorically.

There is relatively minor variation in the veinlets across the broad area of Trek South. Rare examples consist of massive pyrite with little or no quartz (Photo 6). Many of the veins have minor fine-grained chlorite patches and these can be substantial, up to 30-40% locally (Photo 7). In addition, some of the veins have a fine-grained, often somewhat inconspicuous halo of associated sericite alteration +/- minor calcite.

The classification of this quartz-pyrite vein system within the porphyry model is still somewhat uncertain but at this point it is assumed to be a set of "D" veins since they cross-cut the propylitic alteration. In the porphyry copper deposit model, "D" veins are a set of late stage quartz-pyrite veins, often with associated sericite halos, some containing minor chalcopyrite and other sulphides. While D veins are barren in some deposits, they are well mineralized at others, e.g., the Kerr deposit.

VEIN ORIENTATIONS: In 2022, Romios conducted a program of detailed measurements of the density, orientation, composition and associated alteration of the quartz-pyrite veins at ten sites, primarily in an E-W line across the majority of the porphyry system's exposed extent. This program is still a work in progress and as such, only preliminary observations will be made here. General impressions during field work suggest that the quartz-pyrite veins tend to occur in several sets including a roughly E-W, near vertical set and a sub-horizontal set. Strike and dip measurements of the veins at the ten measurement sites have been plotted on rose diagram stereo-nets for each site and these plots are positioned in the appropriate location on Figure 15.

The stereo-nets show more variation in the vein trends than was expected from the general impression one might have mapping this area. Several sites show the ENE-WSW trend often noted in the field but several others, particularly those sites within the Eocene pluton, show quite different trends (e.g., KK-1 and KK-3). Sites KK-5, 6 and 9 show an orthogonal pattern that may be consistent with doming above an intrusion, however, additional measurements are required to fully assess the local structural controls on these veins.

7.6.2.2 Alteration

Propylitic Alteration: By far the most predominant alteration at Trek South is the extensive, strong epidote alteration that occurs across much of the ~1.6 km wide area (Figures 12 and 16), primarily in the volcanic units with only minor occurrences in the intercalated metasediments along the northwestern margin of the mapped area. Epidote occurs as an often dense multitude of veins a few centimetres to tens of centimetres wide (Photo 8), large irregular patches, round spots up to 15-20 cm across, pervasive replacement of fragments and/or the matrix in fragmental volcanic rocks (Photo 9), and as at least one enormous zone 40 x 50 m of almost complete, pervasive epidote replacement. In some areas epidote patches are intergrown with quartz and possibly feldspar and a small percentage of the individual veins are cored by a hard white mineral, again probably quartz and/or feldspar.

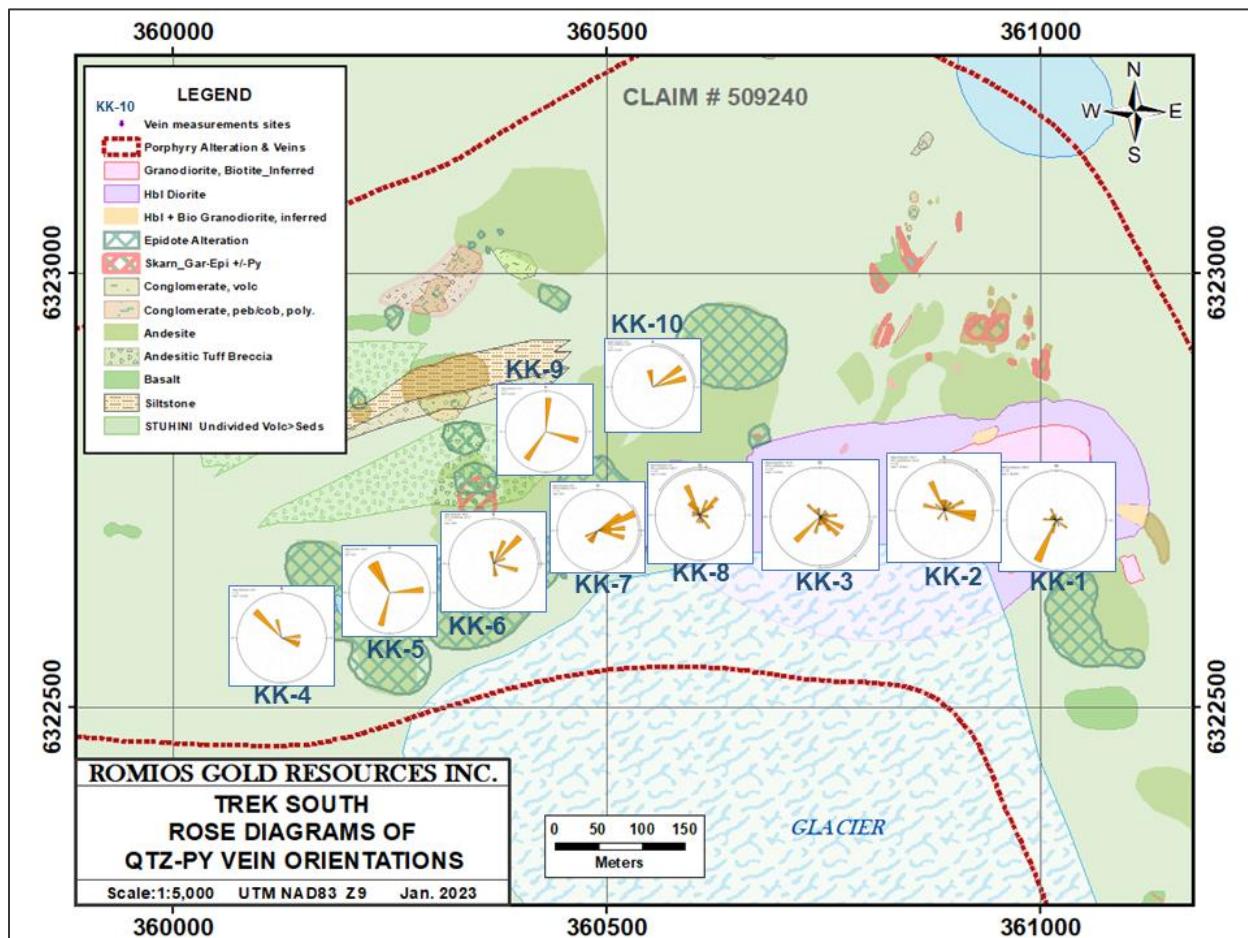
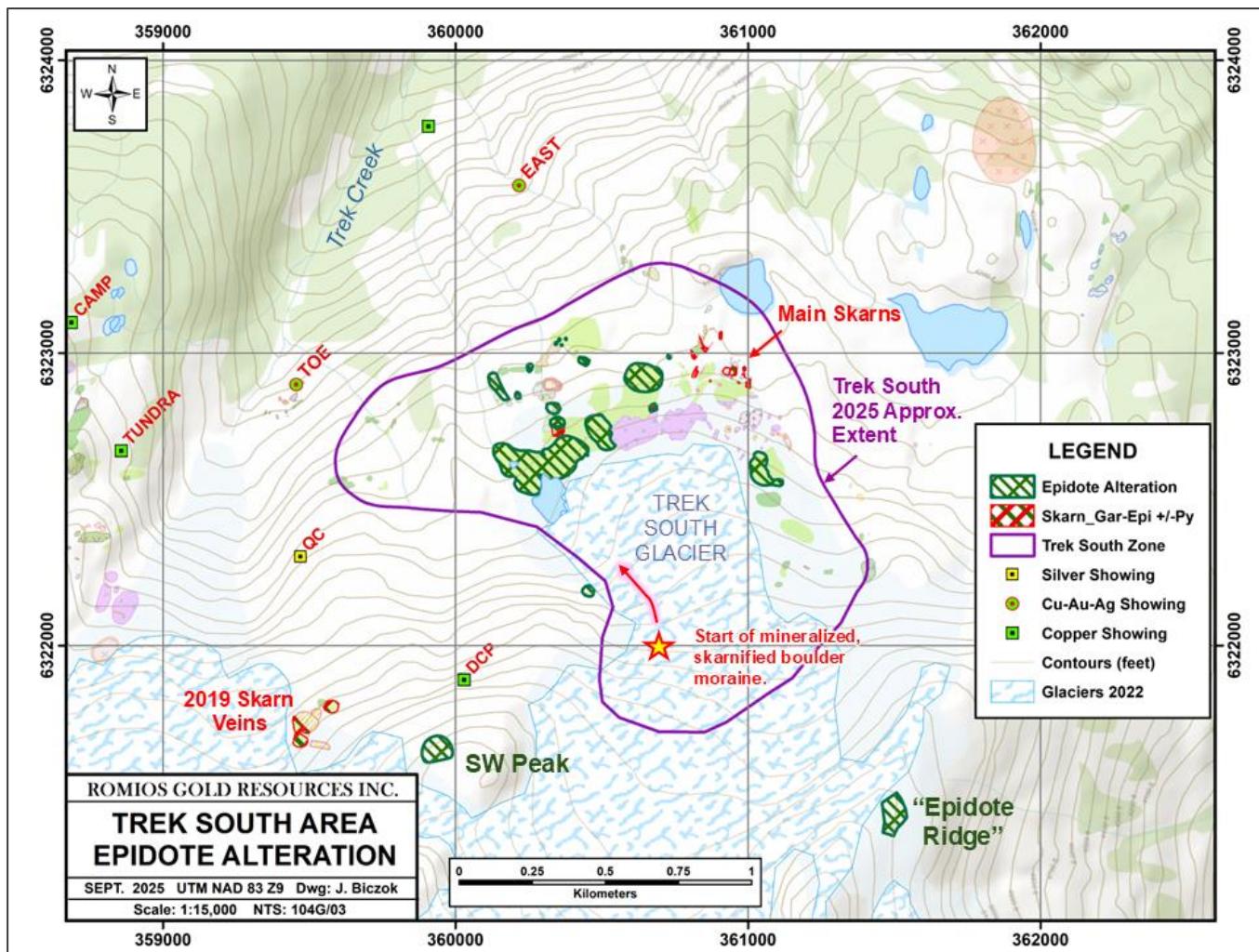



Figure 15: Rose diagram stereonets of Qtz-Py vein orientations, Trek South

The intensity of alteration on the western margin of the main outcrop exposures increases quickly from a moderately thorough replacement of fragments in an andesitic breccia to a dense vein swarm (Photo 8) within 100 m as one moves east, and remains relatively strong and constant across the mapped area. Outside of the main alteration zone at Trek South intense epidote alteration has been found at two distal sites: at “Epidote Ridge”, a ridge crest ~1.6 km southeast of the approximate centre of the Trek South zone; and at “SW Peak”, ~900 m southwest of the margin of the Trek South zone (Figure 16). The epidote alteration at “Epidote Ridge” covers an area at least 150 m long (N-S), and possibly >500 m long, along the eastern edge of the main Trek South glacier with alteration as intense as that found at the Trek South site outboard to the toe of the same glacier. Minor copper sulphides were found in the epidote during a brief examination of this site in 2022 and copper-bearing till has been recovered from glacial moraines downslope

Figure 16: Extent of epidote alteration at Trek South

Photo 8: Relatively typical area of vein and patchy epidote alteration, east-central portion of the Trek South prospect. Looking west

Photo 9: Preferential epidote replacement of fragments in an andesitic breccia (hammer for scale is 58 cm long)

from this area. At "SW Peak", a brief examination in 2025 of the volcanoclastic-epiclastic sequence revealed a different style of epidote alteration consisting mainly of 1) large spherical masses up to 30 cm across (Photo 10), 2) thick bands of massive epidote up 1-2 m long and 30 cm wide, many with dark, recessive cores of a dark, unknown mineral (currently undergoing petrographic analysis) (Photo 11) and 3) scattered zones of fine-grained, pervasive replacement. The 2025 discovery of mineralized boulders coming from an under-ice ledge ~600-700 m south along the glacier from the Trek South exposures has increased the apparent size of this porphyry system and suggests that the "Epidote Ridge" and "SW Peak" alteration is part of the same large alteration system.

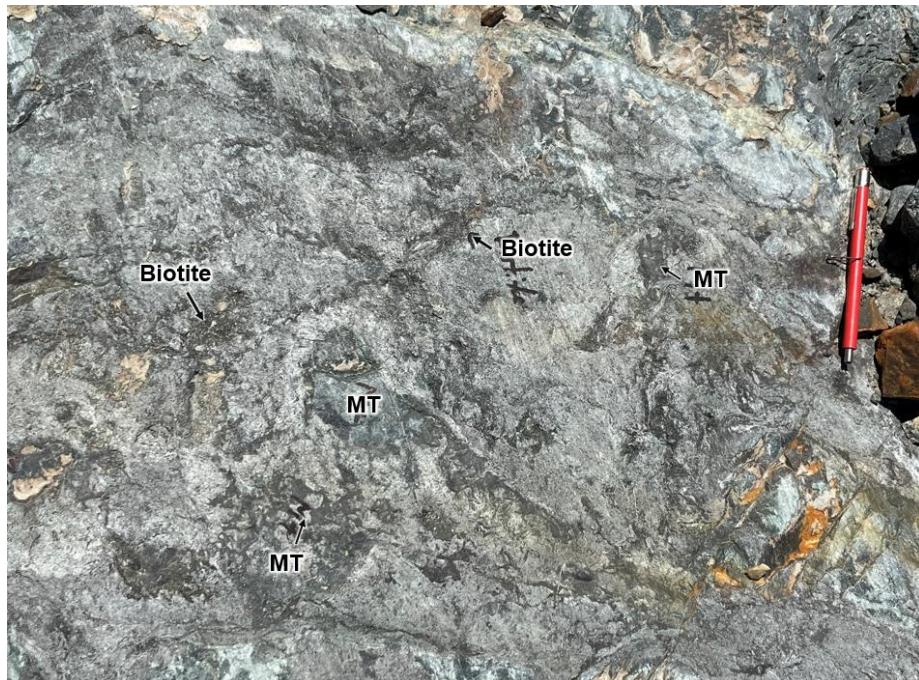
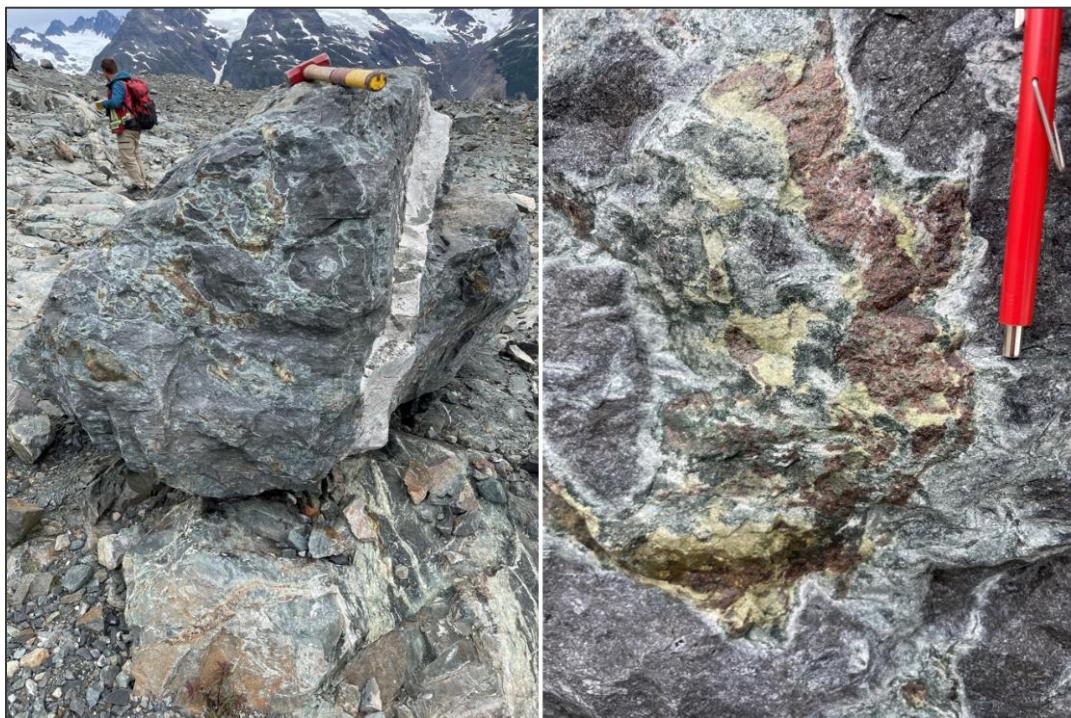


Photo 10: Spherical masses of massive epidote alteration at "SW Peak"

Photo 11: Thick bands of massive epidote alteration up to 2 m long, cored by unknown mineral, "SW Peak"

The extensive epidote alteration system at Trek South is presumed to be the outer propylitic alteration zone surrounding a buried alkalic porphyry system, cut by numerous epidote-garnet skarn type veins/ bands and the late quartz-pyrite veinlet stockwork. Several small actinolite+/-quartz veins were found in this area and are thought to be part of the propylitic shell. One minor occurrence of fine to medium-grained biotite alteration with intergrown magnetite (Photo 12) was observed in 2025 and is presumed to be an offshoot of the more proximal potassic alteration zone. Many of the large glacial till boulders scattered in front of the glacier at Trek South appear to have a fine-grained biotite alteration and these may also be part of the potassic alteration zone, hidden beneath the glacier.


Photo 12: Pervasive biotite alteration with irregular zones of strong biotite and/or magnetite alteration, Trek South.

SKARN VEINS: In addition to the extensive skarns and skarnified metasediments found in the northeast sector of the Trek South prospect (Figure 16), numerous well developed skarn veins (Photo 13), irregular patches and bands are found throughout the area, particularly in the southwest corner near the western edge of the main Trek South glacier toe (Photo 14). The skarns consist of medium- to coarse-grained red garnets and green epidote, generally in roughly similar proportions, with minor amounts of fine- to medium-grained pyrite and magnetite. A small percentage of the skarn veins contain pods up to 12 x 30 cm of semi-massive pyrite+/-magnetite. To date, eight of the skarn veins have been analysed, returning assay values from trace up to 0.2% Cu, 11.5 g/t Ag, 336 ppm V, and 0.725% W. Gold values are typically quite low but one sample assayed 0.197 g/t Au.

SULPHIDE MINERALOGY: The most abundant copper sulphide found to date at Trek South is chalcopyrite, occurring as minor disseminated grains in the epidote alteration, quartz-pyrite veinlets, skarn veins and the northern skarn zones, as well as fracture coatings, primarily in the volcanic rocks. Weathering products include common malachite and rare azurite. Bornite has been found in a cluster of ~0.5 to 1.5 m wide glacial till boulders/erratics located 100 m NNW of the small meltwater pond at the western edge of the Trek South glacier toe. These boulders are angular and fresh and presumably were ripped up from bedrock beneath the glacier and pushed northward >100 m by the glacier before it receded and exposed these rocks. The bornite occurs as masses up to 1 cm thick and 5-10 cm across in rusty, malachite coated veins on several of the boulders and a cluster of small crystals in a vug on another. Chalcopyrite occurs as semi-

Photo 13: Well developed, relatively thick garnet-epidote skarn vein cutting andesitic volcanics at Trek South.

Photo 14: Garnet-epidote(?) skarnified boulder, ~1.7 m high (left image) and close-up of a skarn patch (right image), SW corner of the Trek South prospect. Note skarn veins in underlying bedrock as well.

continuous fracture coatings on at least one of these same boulders. These boulders occur above a significant IP chargeability high that extends south under the edge of the glacier, coincident with the large, circular magnetic high thought to reflect a buried pluton and/or an associated potassic-magnetite alteration zone. Bornite typically occurs in the central core of porphyry copper deposits and the probability that the glacier has picked up and transported bornite bearing rocks a short distance from beneath the ice makes this area a prime target for drilling.

7.6.2.3 Northern Skarns

In 2022, extensive areas of skarnified calcareous siltstone and limestone were discovered and mapped by Romios geologists adjacent to the northeast corner of the Trek South epidote alteration zone and overlapping quartz-pyrite vein stockwork (see Figures 12 and 16). Unlike the skarn-type garnet-epidote veins and bands found scattered throughout the Trek South area, this skarnification is more widespread and pervasive. In this area the skarns are of two main styles: 1) an often pervasive, moderately well-developed, semi-continuous garnet-epidote+/-pyroxene skarn developed over large outcrop areas of variably hornfelsed calcareous siltstone and lesser quartzite, up to ~80 x 130 m across, and 2) largely complete garnet-epidote+/-pyroxene(?) skarnification of three bioclastic limestone horizons up to 17 metres wide (Biczok, 2023). Collectively these skarns are known as the “Northern Skarns” or “Main skarns” and consist of two skarnified limestones at the “North Skarn” and one at the “West Skarn”, plus the broad areas of skarnified siltstone beginning about 80 m southeast of these skarnified limestones.

The limestone skarns are typically visibly mineralized to some degree with disseminated chalcopyrite, massive pods of pyrite up to 1 m across, and disseminated scheelite (visible under a short-wave UV light). Twenty-one samples of the various skarns collected in 2022 (out of a total of 28 samples) returned WO_3 values between 0.04% and 0.68% WO_3 , averaging 0.24% WO_3 . With one exception, the 18 samples with >500 ppm WO_3 (i.e., one lb/t) averaged 0.227% Cu within a range of 0.07% to 0.45% Cu. Follow-up sampling in 2023, guided by the use of a short-wave UV light, returned a weighted average of 0.37% WO_3 and 0.24% Cu across 4.61 m at the North Skarn. The skarnified siltstone areas tend to be pervasively rusty over large areas with more patchy mineralization and less continuous garnet-epidote development than the limestones. Chip sampling in 2022 returned some noteworthy assays from these skarns, e.g., 1 m @ 0.169% Cu, 1,840 ppm W; 50 cm @ 0.29% Cu, 1,340 ppm W; 30 cm @ 0.976% Cu, 420 ppm W (Biczok, 2023). This area of skarnified siltstones has not been re-sampled or investigated since the initial, brief work in 2022 and would seem to warrant a more in-depth look.

The presence of tungsten mineralization was unexpected in this porphyry target area but is considered highly encouraging, given the strong values of Cu-W present relatively distal (200-300 m) to the presumed source pluton.

7.6.3 Lower North Zone – Porphyry Target

The Lower North Zone is located on GCMC's KIM claims, very close to the boundary with Romios' claims about 600 m south of the North Zone. It comprises a linear exposure of sheared rock flanking a monzonite dyke. Malachite, chalcopyrite, pyrite, chalcocite, and iron oxide staining is exposed for about 200 m along hydrologic scarps. Associated alteration consists of K-feldspar, epidote and magnetite. Samples from the area return grades comparable with surface sampling near breccias at the North Zone, and soil sampling along the west side of the creek indicate weak copper, gold, silver, and arsenic anomalies.

The present understanding of the North Zone suggests there is a deeper porphyry body with overlying breccia and structurally-controlled fracture mineralization, alteration-related disseminated mineralization, and mineralized dykes. The Lower North Zone may be a surface expression of the porphyry-overlying mineralization style, similar to the Northeast and Upper Northeast subzones, and should be explored in greater detail, either by Romios alone on their claims or in conjunction with GCMC on the entire zone.

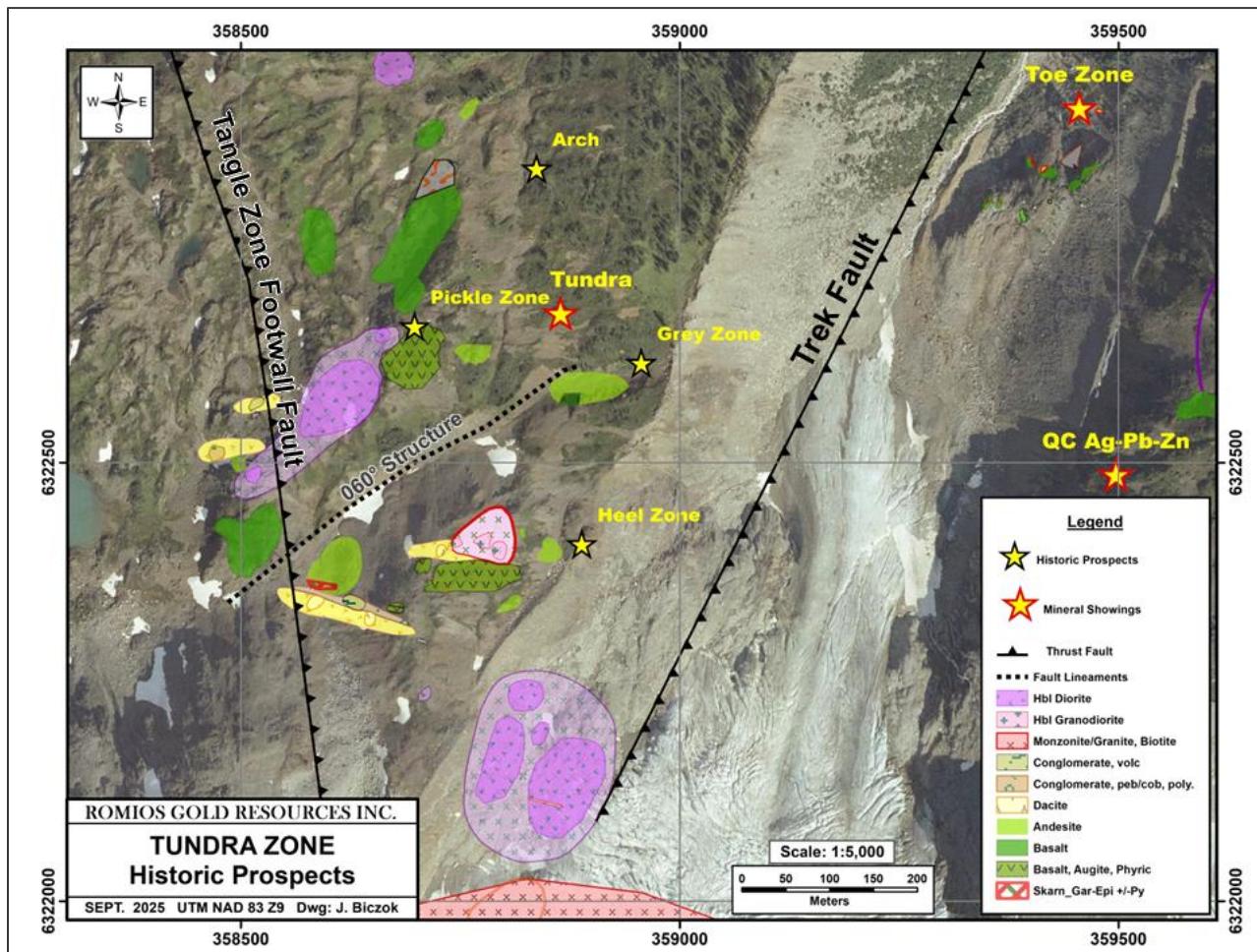
7.6.4 Tangle Zone Alkalic Porphyry (combined West and Wall subzones)

The Tangle Zone is an alkalic porphyry Cu-Au-Ag prospect (Figures 6 and 14) that covers the area of the 2006 soil geochemical grid (Figure 28) and encompasses the areas previously known as the West and Wall zones. Soil geochemistry results from the 2006 exploration season show these two zones to be connected by a semi-continuous zone of anomalous Cu-Au-As and more localised, spotty Mo, Ag, Pb, and Zn anomalies over an area 600 m x 1100 m. A portion of this soil grid, as well as the West Zone itself, lie 75-100 m inside the SPHAL claims owned by GCMC. As at the North Zone, mineralization and alteration here are associated with northeast-trending monzonite dykes as well as orthoclase-phyric syenite dykes, highly k-feldspar and biotite altered, and pseudoleucite-phyric alkali feldspar syenite dykes. Host rocks of porphyry-style mineralization at the Tangle Zone include subvolcanic diorite, andesite flows, andesite crystal and lapilli tuffs of the Stuhini Group, and cobble-conglomerates including clasts of the other host lithologies. Mineralization at the Tangle Zone consists of up to 40% pyrite including zones of semi-massive pyrite, pyrrhotite, chalcopyrite and malachite with lesser bornite as disseminations, fracture fill and blebby concentrations of sulphides. Massive sulphide veins up to 30 cm wide occasionally occur in the most intensely mineralized and altered areas.

Two drill holes collared from the same site in 2011 targeted a Cu-Au in soil anomaly and reportedly a combined aeromagnetic and resistivity high (from the 2007 DIGHEM V electromagnetic and aeromagnetic survey report by Fugro Airborne Surveys Corp., appended in Awmack, 2008) approximately 300 m south of the Wall Zone. The drill holes appear to have tested the approximate centre of the IP chargeability high on the 2010 IP-MT survey line in this area. Drilling intersected two zones of strong alteration and, for the most part, barren pyrite mineralization bisected by the Tangle Zone fault and a zone of propylitic alteration. The upper

zone is comprised of garnet bearing, potassically and calc-potassically altered conglomerate and breccia. Mineralization in this zone consists of disseminated and blebby pyrite, pyrrhotite, and minor chalcopyrite. The best intercept from this zone is 2.64 m @ 0.86% Cu and 0.4 g/t Au; very few assays elsewhere in this hole exceeded 0.1% Cu. This zone is truncated by the Tangle Zone fault interpreted to be a thrust or oblique-thrust fault. At surface the fault separates chloritized augite-bearing mafic flows in the hanging wall from apparently unaltered augite and plagioclase-bearing tuffs, and continues to depth.

The second, lower zone of alteration and mineralization consists of intense potassic alteration in a sequence of conglomerates, tuffs, orthoclase and pseudoleucite-bearing dykes, and orthomagmatic breccia. The mineralization in this zone consists predominantly of pyrite, which occurs in disseminated crystals, blebs, and semi-massive zones with lesser chalcopyrite occurring as disseminated crystals, clots, and veins. The mineralization is commonly located on the margins of the orthoclase and pseudoleucite-bearing dykes, especially in the orthomagmatic breccias which develop on these margins. The best intercept from this zone is 0.527% Cu and 0.33 g/t Au over 2.2 m.


The presence of the SPHAL claim block owned by GCMC overlying a significant portion of the Tangle Zone target has complicated Romios' work program and restricted drilling options. Nevertheless, the extent of the soil geochemical anomaly and style of mineralization, plus the presence of geophysical anomalies warrant a re-examination of the data on this target.

7.6.5 Tundra Zone (former Heel, Grey, Arch, and Pickle Zones) – Porphyry Target

The Tundra Zone (Figures 6, 14 and 17) consists of what was previously known as the Heel, Grey, Arch, and Pickle Zones (Simmons, 2006). The Pickle Zone was sampled by Lorica Resources in 1990 (Awmack, 1990). These Zones were grouped together in a ~500 m (N-S) by 300 m (E-W) cluster because "they appear to be continuously mineralized from one zone to the next" (Bernales et. al., 2008). The Tundra Zone appears to be geologically bounded to the west by the Tangle Zone fault and is crossed by a large structure with a surface trace trending approximately 060° expressed by an approximately 10 m wide zone of broken rock within a linear topographic depression. To the south of this structure, potassic and calc-potassic alteration predominates, whereas to the north, propylitic alteration is dominant (Close and Danz, 2012). The 2020 hyperspectral survey covered a large proportion of the Tundra site and confirmed the presence of white micas and biotite south of the aforementioned structure and epidote to the north. The true orientation and sense of movement on this structure is unclear. Mineralization north and west of this lineament is spatially limited to shear zones where fracture density is high. These zones are generally less than 10 m wide and NNE-trending (Bernales, 2006).

Host rocks in the area include Jurassic monzonite and Stuhini Group rocks. Lithologies of the host Stuhini Group rocks include subvolcanic diorite porphyry, andesitic augite-feldspar crystal tuff,

and volcanic conglomerate. The subvolcanic diorite porphyry appears to be preferentially mineralized and the mineralization is spatially related to its southern contact with a Jurassic monzonite. However, mineralization is cut off to the south where a large Eocene granodiorite has intruded the mineralized Stuhini Group rocks. Alteration in this area consists of strong fine-grained biotite, concentrated along fracture planes, with lesser k-feldspar and magnetite. The diorite porphyry is also pyrrhotite and chalcopyrite bearing, and may represent the source of metals in the Tundra Zone (Close and Danz, 2012).

Figure 17: Historic showings and geology of the Tundra Zone area

Simmons (2006) reports that mineralization at the Tundra Zone consists of 5-15% pyrite, chalcopyrite and lesser pyrrhotite as disseminations, fracture coatings, and blebby concentrations of sulphides with semi-massive sulphide-(quartz) veins up to 20 cm wide in NNE-trending shear zones. This style of mineralization gradually transitions into the disseminated style of mineralization, but is not as well mineralized with Cu, Au, or Ag as other areas. Internal fractures are often coated with azurite and malachite. One-day mapping traverses by Romios crews in 2018 and 2019 in the Tundra Zone area (Biczok, 2018; Biczok, 2019) outlined a ~100 x

250 m hornblende diorite intrusion with locally well-developed epidote alteration and minor, sporadic copper mineralization. A similar intrusion, ~200 m across was found 200 m to the southeast and is cut off by a large Eocene pluton to the south. Recent mapping indicates that the exposed intrusions in the Tundra area are likely not as large as mapped in the past, but rather are several smaller, discrete plutons clustered together.

Chip sampling in 2006 of pyritic “siliceous mafic sandstone” flanking granite at the Heel Zone returned assays of 0.183% Cu and 0.47 g/t Au across 3 m and 0.37 g/t Au across 5 m (Simmons, 2006). Romios’ more recent mapping and sampling of an arenaceous siltstone near the northern pluton revealed unusual, syngenetic looking pyrite laminae that returned an assay of 0.99% Cu, 1.58 g/t Au and 54 g/t Ag, an atypical metal content for syngenetic pyrite layers, possibly indicating it has been overprinted by a later event (Biczok, 2019). The Pickle and Arch Zones were sampled by Lorica Resources in 1990 (Awmack, 1991). Chip sampling at the Pickle Zone returned 1.2 g/t Au, 0.42% Cu, 37.8 g/t Ag and 0.7% Zn across a 1.26 m wide shear zone parallel to the 060° lineament. Chip samples of a sulphide-rich shear zone at the Arch site returned 1.62% Zn, 0.2% Pb, 0.297% Cu and 110 ppb Au across 1.48 m; this shear can be traced for 50 m and strikes 030°; float samples taken downhill from this shear assayed 2.6 and 3.6 g/t Au. A 2006 rock sample taken from a highly gossanous outcrop southwest of the Grey Zone assayed 41.8 g/t Au and 84.2 g/t Ag indicating that there are local high-grades within this zone (Simmons, 2006).

Although the Tundra Zone, and the sub-zones included in this area, was described in the 2006 report as a porphyry copper target with disseminated and fracture-controlled mineralization in and near various plutons, there are only a few sample results reported from this type of mineralization in the 2006 and earlier reports. No follow-up sampling work is noted in the 2007-2011 reports although detailed geological mapping was undertaken during this period and is compiled on the 2011 geology map in Close and Danz (2012). Romios’ geologists in the 2009-2010 period considered the Tundra Zone a worthwhile drill target and arranged for the construction of two drill pads on this site but drilling was not initiated at that time. Given the gaps in the sampling of the assumed porphyry-type mineralization and the discrepancies in the early geological mapping of the area noted in the 2018-2019 program, a detailed re-mapping and sampling program of this area followed by soil geochemical and geophysical surveys (ground magnetics and IP) prior to any diamond drilling would be advisable.

7.6.6 Silver Standard Zone – Porphyry(?)

The Silver Standard Zone lies along the west side of Trek Creek about 500 m south of Sphaler Creek (Figure 6). Awmack (1991) described the Silver Standard Zone generally as “porphyry-style disseminated chalcopyrite in diorite and monzonite” and more specifically as “highly silicified, fractured and sheared black rock contain(ing) abundant chalcopyrite in quartz veins and disseminations”. Four samples collected in 1990 assayed up to 2.35% Cu and 130 ppb Au with

the chalcopyrite largely oxidized to malachite. Lead, zinc, arsenic and silver values are generally low. Outcrop exposures here are poor and the original 1960s trench is overgrown.

Romios geologists proposed drill testing an airborne geophysical anomaly that overlaps the Silver Standard zone in 2008 but this was not undertaken (Bernales et. al., 2008) and the mineralized area does not appear to have been mapped in any detail by past workers. Given the reported porphyry-style of this mineralized prospect and its position between the Trek North and Trek South zones, the Silver Standard zone should be mapped and sampled in detail to determine the true nature and extent of the mineralization and if it warrants geophysical surveys.

7.6.7 DCP Zone – Porphyry(?)

The DCP showing was discovered by Romios' exploration crew in 2008 while following up isolated conductors detected in the 2007 Fugro airborne survey. This prospect is located southwest of the current Trek South target, ~900 m ESE of the head of Trek Creek (Figure 16) in scattered outcrops within and at the toe of a large glacier. It lies within mafic volcanics rocks dominated by basalt and lesser volcaniclastics, flow breccias, and marine sedimentary sequences. Molybdenite mineralization is seen over an approximately 100 x 100 m area in quartz veins+/-chalcopyrite and rare muscovite. Veins rarely exceed 1 cm in width, and vein density is low. This area is ~580 m northeast of a large Eocene monzonitic intrusion, a suite known to be associated with molybdenum and base metal mineralization. A small aeromagnetic high underlies the toe of the glacier. Monzonite dykes were reported in 2008 cutting the mafic volcanics and exploration efforts in 2025 noted NE-trending monzonite dykes crossing this area between Trek South and the "SW Peak", culminating in an area of extensive epidote alteration on that peak 200 m SW of the DCP Zone (Biczok, 2025). Age-dating of these dykes is underway at the time of this report. Copper mineralization was observed at DCP over an approximately 200 x 200 m area as malachite staining on fractures, as rare chalcopyrite clots associated with epidote alteration, or less commonly as malachite infill of vesicles within the basaltic flows. Little primary mineralization is seen in these low-permeability basaltic host rocks but trace element geochemistry of rock samples shows elevated potassium content. Alteration is characterized by epidote, quartz-pyrite, calcite and rare k-feldspar veins, and chalcopyrite-pyrite mineralization seems most common in quartz+/-calcite+/epidote veins. Secondary biotite and sericite were noted locally.

While it is entirely possible that the molybdenite+/-copper mineralization at the DCP zone is related to the Eocene pluton located >500 m to the southwest, or smaller intrusions of that suite, the 2025 discovery of intense epidote alteration on "SW Peak" between the DCP Zone and that intrusion provides an alternate possibility. The linear trend of the granitoid dykes from SW Peak to Trek South, the discovery of mineralized and skarnified boulders coming from the Trek South glacier ~500 m east of the DCP zone, and the presence of strong epidote alteration at SW Peak, suggest that the copper mineralization may be related to the Trek South system. Mapping of the

rugged area between DCP and Trek South, where possible, is warranted to help determine the controls on this mineralization and its potential.

7.6.8 Gully Zone – Sulphide Veins

The Gully Zone mineralization is exposed in a 030° trending, steeply dipping, highly altered shear zone south of Sphaler Creek and west of Trek Creek (Figure 14). It was discovered in 1988 by Lorica Resources and trenching, VLF and magnetic geophysical and soil geochemical surveys the following year indicated that the zone has a minimum strike length of 400 m and possibly as much as 900 m (Caulfield, 1989; Awmack, 1991). Mineralization consists of a 1.5 m to 2.5 m wide zone of semi-massive to massive pyrrhotite, chalcopyrite with lesser pyrite, trace arsenopyrite and local magnetite and molybdenite (Baknes, 1994), believed to have been emplaced as veins in the shear zone. Chip and grab samples of this zone from previous exploration programs assayed up to 8.77 g/t Au, 14.4 g/t Ag and 5.31% Cu over 3.6 m and 5.0 g/t Au, 9.6 g/t Ag and 3.71% Cu in a grab sample (Awmack & Yamamura, 1988). Alteration associated with mineralization occurs over a broad halo relative to the sulphide zones (veins?) and consists of an epidote zone up to 15-20 metres wide which gives way to sericite with or without quartz and potassium feldspar alteration. Chlorite-pyrite alteration occurs as patchy replacements, folioform bands, and a stockwork that crosscuts earlier developed sericite alteration.

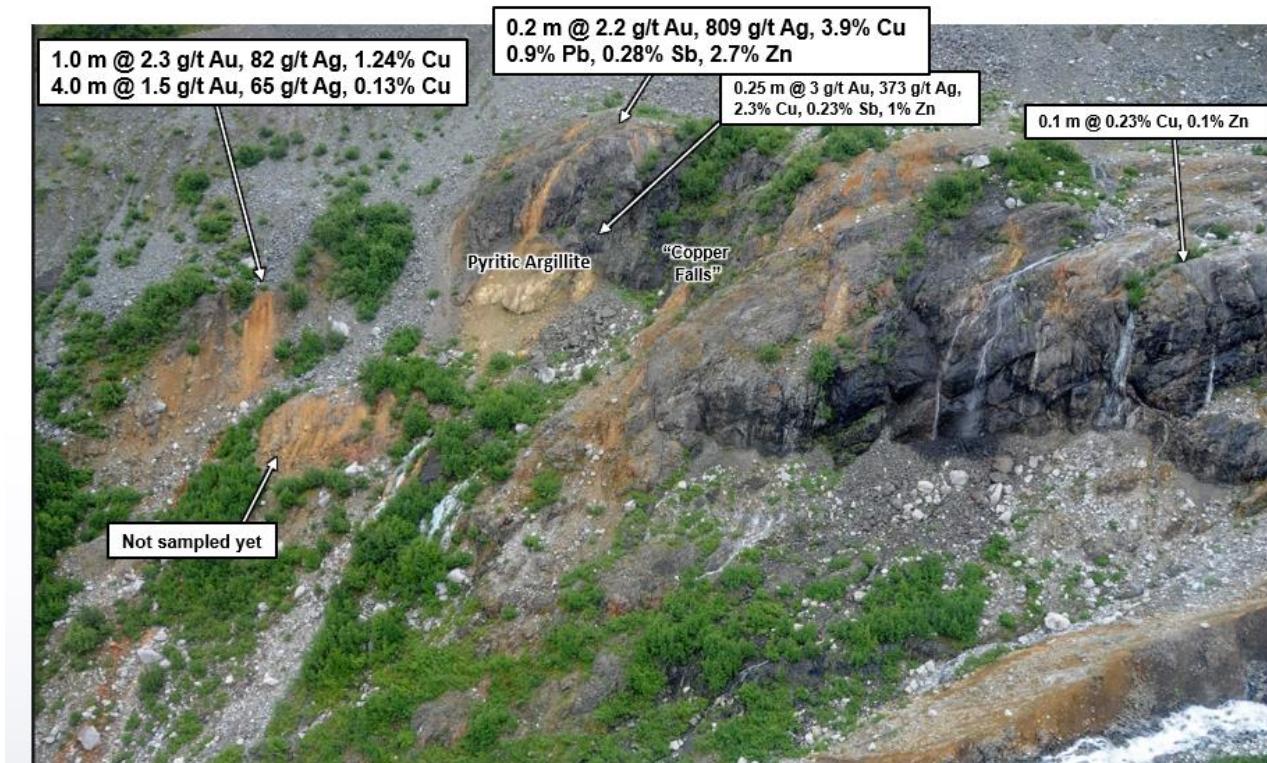
In 1993, Warner Ventures drilled six holes of BTW diameter core from three sites into the Gully zone, testing a 110 m strike length of the mineralized structure; highlights from this program included 10.4 metres (7 metres true width) of 1.5 g/t Au and 1.49% Cu, 1.1 metres of 1.6 g/t Au and 1.13% Cu, 6 m of 3.1 g/t Au and 1.26% Cu, and 9.7 metres of 0.53 g/t Au and 0.31% Cu (Baknes, 1994). Given the locally significant assay values from this sulphide mineralization, work was then undertaken to delineate the strike extent of this mineralization. On the north side of Sphaler Creek, along strike of the Gully Zone, significant sericite alteration was found but no massive sulphide veins were located. This could be due to either the vein system pinching out or that it is hidden by vegetation, cover and extreme topography on the north side of Sphaler Creek. A sample of sericite-chlorite altered andesite taken on the north side of Sphaler Creek assayed 0.12 g/t Au and 1.4 g/t Ag. Though not high grade, these results demonstrate that the system might carry on along strike to the north.

During the 2011 field season, the historic 1993 BTW core was found by Romios personnel and mostly restored to its original condition. A re-interpretation of this core, if it is still stored in adequate condition at the Trek South core storage site, may yield new insights into the mineralization present at the Gully Zone and indicate whether further work is warranted here.

7.6.9 Tomb Zone - Sulphide Veins

The Tomb Zone, located ~1.3 km due north of the Trek South zone along the south side of Sphaler Creek (Figure 6), has massive sulphide veins up to 10 cm wide trending northeast and dipping

moderately to the northwest, containing quartz partially dissolved by *in situ* generated acids, sericite alteration and up to 80% pyrite (“QSP” alteration) with some zones of “arsenic” (arsenopyrite?) located on the perimeter (Close and Danz, 2012). These massive veins are in a similar orientation to that of the Trek Fault and may be tension joints where hydrothermal fluids were deposited. Two grab samples taken from these veins by Romios personnel in 2011 assayed 0.005% Cu and 0.25 g/t Au and 0.002% Cu and 0.40 g/t Au and another nearby vein sample assayed 0.27% Cu. Alteration surrounding the veins is QSP with disseminated chalcopyrite, pyrite and locally bornite up to 0.5%. The rock is highly fractured with heavy iron oxide staining and forms a visible alteration zone ~150 m wide along the south bank of Sphaler Creek.


No further work was done on the Tomb Zone after the limited 2011 sampling. This broad zone of strong alteration with local, weakly mineralized semi-massive pyrite veins, lies within the broadest, strongest portion of the resistivity low detected by the 2007 Fugro survey along the Trek Fault and warrants a detailed re-examination.

7.6.10 Toe Zone – Massive Sulphides

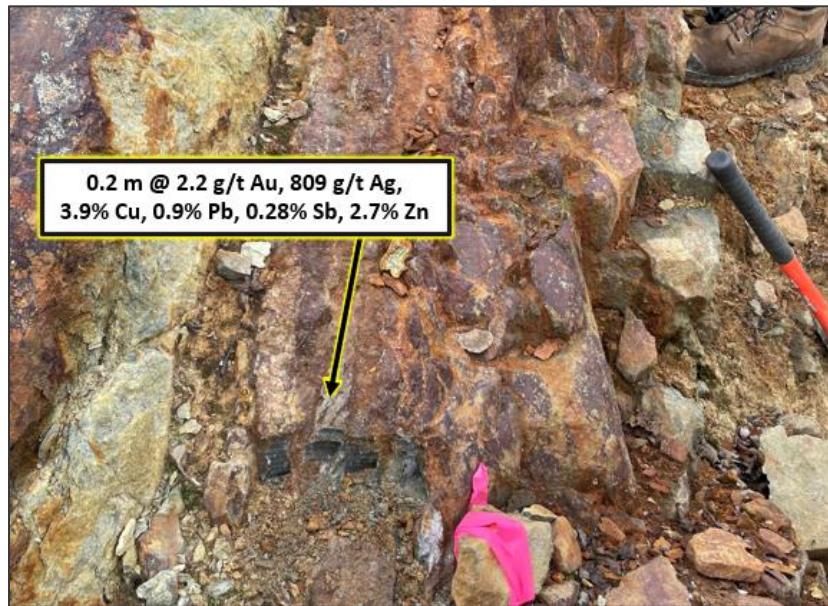
The Toe Zone showing was discovered by Lorica Resources in 1988 within exposures on the east side of Trek Creek (Photo 15, Figures 6 and 17) in front of the toe of the Trek Creek glacier as it stood at that time (Awmack and Yamamura, 1988). It hosts several impressive horizons of high-grade Cu-Au-Ag-Zn-Sb mineralization and is considered to be the most promising prospect on the Trek claims outside of the porphyry targets. Originally considered to be a possible Kuroko-style deposit, Romios’ geologists now favour an Eskay Creek model due to the similarity in the stratigraphy and metal contents. Since the discovery of this prospect in 1988, the Trek Creek glacier has receded approximately 600 m to the south, exposing a large swath of rusty overburden and rusty, pyrite-rich, locally skarnified and copper-bearing outcrops about 450 m south of the original Toe Zone (Photo 16). These outcrops may represent the distal pyritic halo around the more mineralized core of the Toe Zone.

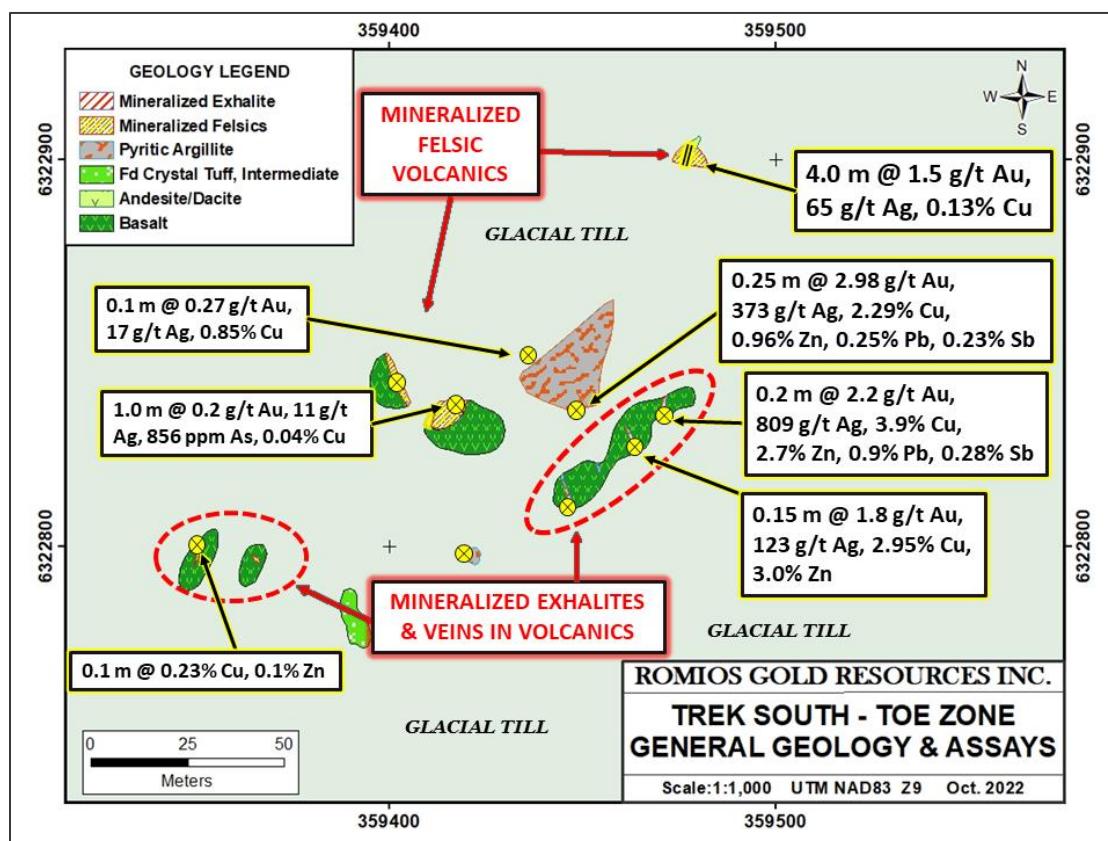
The original Toe Zone outcrops have been mapped and sampled by Romios personnel and geologists from other groups at various times, most recently by Romios in 2021 and 2022. There has been no geophysical surveying nor drilling of this prospect in spite of the impressive assay results returned by multiple samplers over the past decades, including the Romios results shown on Photo 15.


The host rocks for the Toe Zone were originally mapped as variably altered (pyrite-sericite-silica), fine-grained andesitic tuff with discontinuous, well-banded to poorly-banded, steeply dipping sulphide lenses up to 3 m wide, conformable with the bedded tuffs (Awmack, 1991). Mineralization was described as massive and semi-massive sulphide patches characterized by variably banded/layered pyrite, chalcopyrite, sphalerite, galena, and barite and this prospect was

Photo 15: Aerial view of the main TOE Zone outcrop, looking southeast. Assays from 2021 & 2022 samples (Biczok, 2023)

interpreted as a Kuroko-type volcanogenic massive sulphide occurrence. Subsequent mapping by Romios geologists revealed at least 7 horizons of pyritic felsic volcanics a few metres to tens of metres wide, spread across a >175 m long (NE-SW) and ~65 m wide (NW-SE) embankment (Photo 15) (Biczok, 2023). These felsic horizons are intercalated with primarily basaltic volcanics and feldspar-crystal intermediate tuffs. A 30 m wide, yellow iron sulphate stained cliff face comprised of a black, fine-grained, massive, featureless unit with locally abundant disseminated, fine-grained pyrite dominates the central part of the prospect. Past workers apparently interpreted these rocks as andesitic volcanics but Romios' geologists now believe that they are actually pyritic argillites as they lack visible feldspar, have widespread disseminated cubic pyrite, and appear sedimentary rather than volcanic in thin section.


Romios' mapping has located three well-mineralized exhalites and two smaller sulphidic horizons. Assay results from the 2022 sampling program are shown on Figure 18. The three largest exhalites average about 1 m in total thickness and have a semi-massive to massive, highly mineralized pyrite core ~10-20 cm wide, flanked by siliceous layers with up to 40% disseminated pyrite; a typical example is depicted in Photo 17. The mineralized exhalites are notable for their high concentrations of multiple metals including up to 3.9% Cu, 809 g/t Ag, 2.98 g/t Au, 0.9% Pb, 3.0% Zn, 0.28% Sb and 856 ppm As, with locally elevated cadmium (268 ppm Cd), tellurium (36 ppm Te) and vanadium (377 ppm V).


Photo 16: TOE Zone recent exposures: rusty glacial till in foreground, rusty, pyritic outcrops in back left corner. Looking south, ~400 m south of original TOE Zone outcrop

A felsic horizon exposed at the TOE Zone has also returned significant gold values (see Photo 15, left most site). A 1 metre wide chip sample across the centre of a ~4 metre wide, highly weathered and friable pyritic felsic horizon at the NE limit of the examined outcrops assayed 2.3 g/t Au, 82 g/t Ag, and 1.24% Cu (Biczok 2021, sample # D779131). Four chip samples, each 1 m wide, collected across the width of the zone returned a weighted average of 1.5 g/t Au, 65 g/t Ag and 0.13% Cu (Photo 15, Figure 18). This 4 m wide zone is highly weathered and it is likely that some of the metal contents like copper would be higher at depth in fresh rock.

The TOE zone outcrops are exposed primarily on a NW facing escarpment that is obscured to the NW and SE by glacial till and important portions of the escarpment are covered in dense underbrush. The favourable geological setting and high-grade base and precious metal mineralization at the Toe Zone warrant a significant exploration program, see Section 26 - Recommendations for details.

Photo 17: Typical mineralized exhalite horizon within the basaltic pile at the TOE Zone

Figure 18: Romios' assay results from the TOE Zone in 2022

7.6.11 East Zone – Quartz Sulphide Veins

The East Zone is located approximately 770 m south of Sphaler Creek in a NW-flowing stream gully which joins Trek Creek near its confluence with Sphaler Creek (Figures 6 and 16). This prospect is the largest quartz vein system known on the property, excluding the quartz-pyrite stockwork at Trek South. Geologists working for Lorica Resources in 1990 described the showing as consisting of several parallel quartz-pyrite veins up to 80 cm wide having local concentrations of sphalerite, galena and chalcopyrite, with a 0.5 to 1.5 m wide margin of intensely silicified and sericitized conglomerate of the Stuhini Group (Awmack, 1991). A select grab sample assayed 1.5 g/t Au, 809 g/t Ag, 1.0% Cu, 9.15% Pb, and 20.5% Zn while a chip sample across 0.6 m assayed 1.2 g/t Au, 162.5 g/t Ag, 0.168% Cu, 0.58% Pb and 0.98% Zn. This latter sample suggested to Lorica that the gold may be associated with pyrite and/or arsenopyrite rather than chalcopyrite. The veins strike east-west and dip steeply north. Similar looking alteration and veins were discovered ~250 m to the WSW in the next side creek to the south of the East Zone site and it was suggested at that time that the vein system might be continuous between these 2 sites.

8 DEPOSIT TYPES

A variety of mineralization types occur on the Trek property. The primary targets for Romios and many of the previous claim holders were the porphyry Cu-Au-Ag prospects, initially at Trek North, Tangle and Tundra, and in recent years at Trek South. A number of sulphide-rich, vein-like occurrences such as the Gully Zone may be part of the porphyry systems but their origin remains uncertain at this point and some of these may be varieties of syngenetic, volcanogenic massive sulphide deposits. The Toe Zone is believed to be one of the clearest examples of a massive sulphide deposit, in this case a shallow-level variety with high Au-Ag-Cu-Pb-Zn and Sb levels, similar to the Eskay Creek and/or Kuroko-type deposits. These various deposit types are described below.

8.1 Alkalic Porphyry Cu-Au-Ag Deposits

The target of much of the exploration work on claims has been the apparent alkalic porphyry Cu-Au-Ag style of mineralization at Trek North and Trek South as well as the indications of similar types of alteration and mineralization at the Tangle and Tundra prospects. Trek North is just 7 km from Copper Canyon and 10 km from the nearest Galore Creek deposits and shares many geological features with those classic alkalic porphyries, including the presence of unusual and highly alkalic rock types such as pseudoleucite porphyries.

There are numerous very large porphyry copper-gold+/-silver deposits in the northern Golden Triangle (Figure 19), including a major operating mine at Red Chris and some enormous deposits in the pre-feasibility stage (e.g., Galore Creek) or on the road to development (e.g., KSM). The cluster of alkalic porphyry deposits (Galore Creek - Copper Canyon - Trek North - Burgundy Ridge) is seemingly surrounded by calc-alkalic porphyries. Some deposits appear to be transitional between the alkalic and calc-alkalic members (e.g., Red Chris). New discoveries continue to be made in recent years such as Saddle North, SNIP North, KSP, Burgundy Ridge, etc.

Alkalic porphyry deposits are more abundant in British Columbia than other parts of the world and have been referred to as a “BC specialty” (Bissig, 2010). Similar deposits occur at Northparkes, Cadia and Ridgeway in Australia but a far greater number and variety of alkalic porphyries occur in BC, forming a >1,000 km long trend from Galore Creek and Red Chris in the north, southward through Lorraine, Mt. Milligan and Mt. Polley in central BC, to Afton and Copper Mountain in southernmost BC. Most of the porphyry endowment occurred within a 15 m.y. window with 90% of it occurring in a 6 m.y. pulse centred at 205 Ma (Logan and Mihalynuk, 2014).

Alkalic porphyry deposits in BC are found mainly in silica-undersaturated systems and replacement-style mineralization is characteristic (Chamberlain et. al., 2007). Much of the mineralization in these deposits is commonly skarn-like and hosted in altered volcanic rocks and, in some cases to a lesser extent, alkalic dykes and plutons (e.g., Bissig, 2010; Logan and Mihalynuk, 2014). Magmatic-hydrothermal breccias are particularly important in some deposits, particularly the silica undersaturated types, and may host high-grade mineralization.

The alteration footprints of alkalic porphyries are complicated, generally narrow, often more calcic in all alteration phases, less evident than in calc-alkalic systems and the relationships between the different alteration zones can be subtle. A simplified calc-alkalic alteration model is shown in Figure 20 followed by an alkalic porphyry model in Figure 21. Alteration assemblages of alkalic porphyries include an inner potassic core (orthoclase-specular hematite and biotite-magnetite in mafic rocks, K-feldspar in felsic hosts), grading outwards through various more calcic (garnet, diopside, +/- anhydrite), sodic and propylitic (epidote-chlorite-carbonate-sericite) phases, with abundant magnetite and hematite dusting. Phyllitic and argillic alteration is scarce to absent although the lack of advanced argillic lithocaps may be due to erosion (Sillitoe and Hedenquist, 2025). Quartz veins are found only in deposits related to silica saturated rocks. Calcite may be a major component as veins, cement and pervasive alteration. At Galore Creek, disseminated pyrite occurs in the outer propylitic zone around some of the deposits. The predominant alteration evident on surface at Trek South is believed to be part of the epidote subzone of the propylitic halo and, like Galore Creek, fine-grained disseminated pyrite is common in minor amounts throughout much of this area.

Sulphides in alkalic systems are typically zoned from an outer pyrite halo inward to chalcopyrite, chalcopyrite + bornite and finally an inner core dominated by bornite and chalcocite. The sulphide content is generally lower than that of calc-alkalic deposits. At Galore Creek, the chalcopyrite to bornite ratio is 10:1 and sphalerite and galena occur in garnet-rich areas.

Trek North is a partially drilled porphyry Cu-Au-Ag deposit with a strong alkalic character including an association of mineralization with pseudoleucite and K-feldspar rich volcanics and intrusives, breccia pipes and monzonite dykes. Mineralization is predominantly replacement and fracture-controlled style plus at least two areas of significant, higher-grade magmatic-hydrothermal breccia hosted mineralization. Overall, the alteration is dominated by potassic, calc-potassic and calc-sodic assemblages within the ore zones, with carbonate-rich propylitic

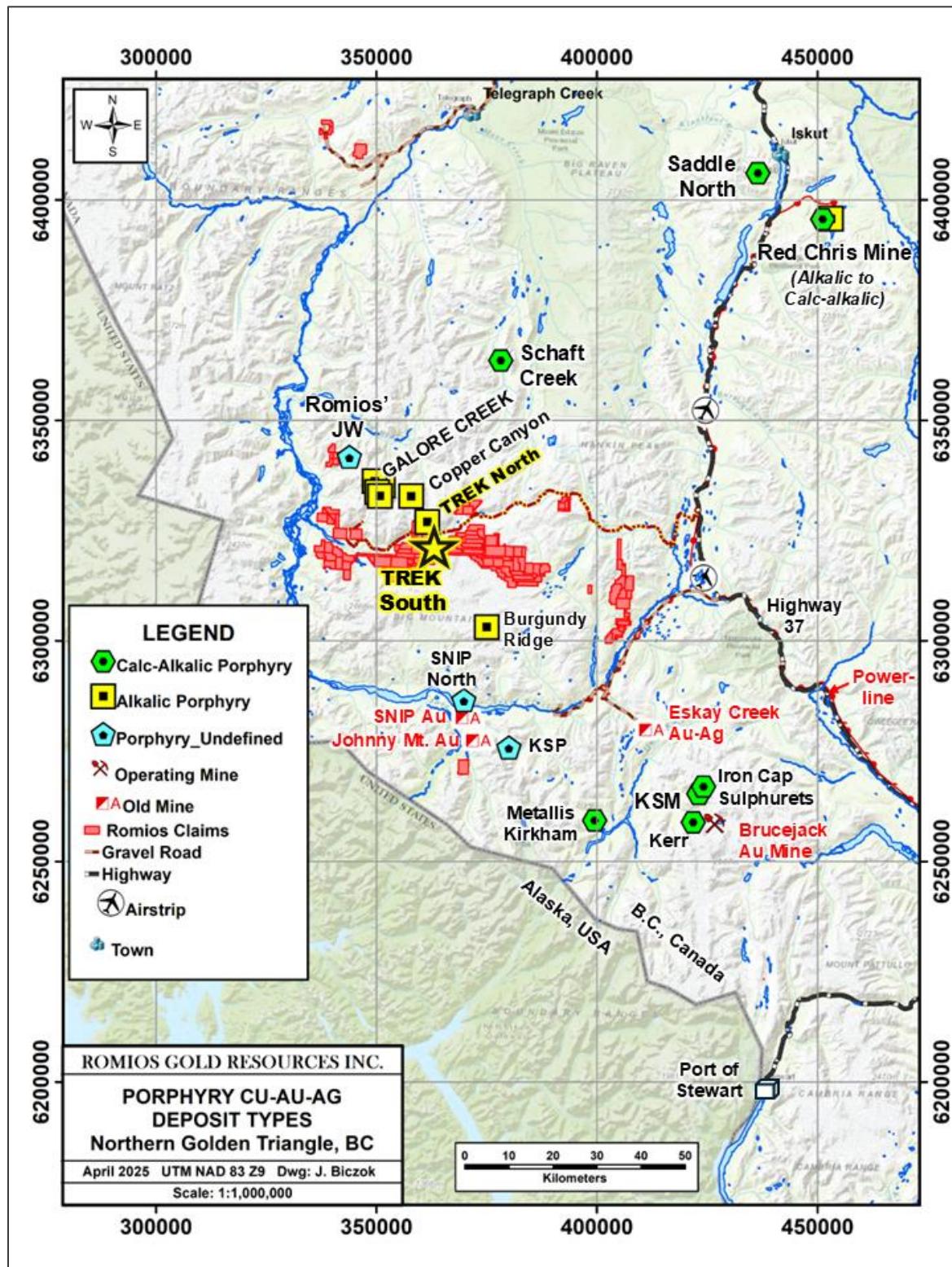
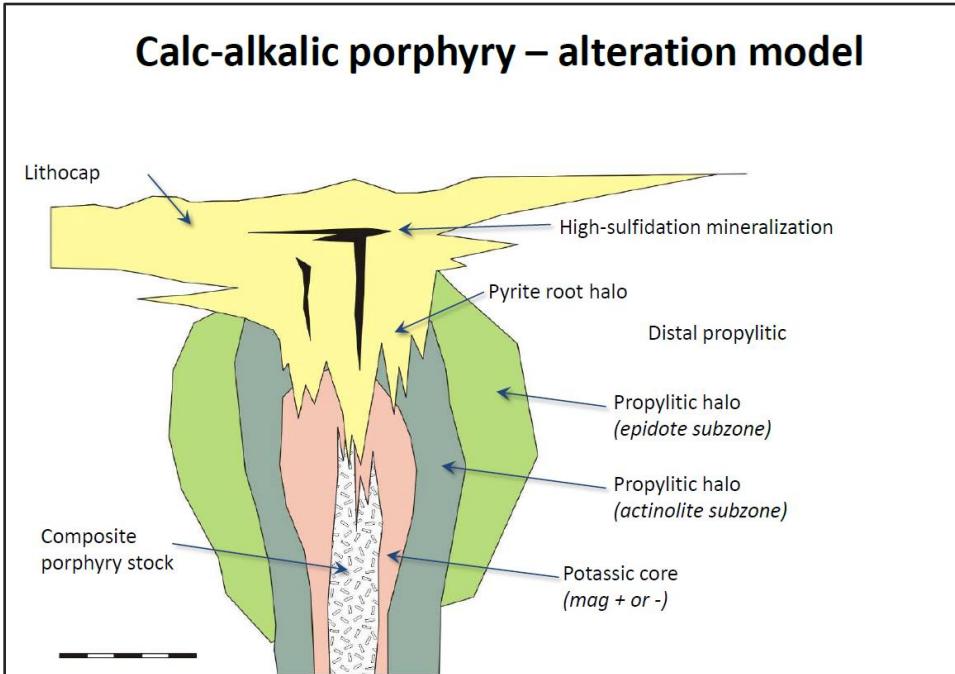
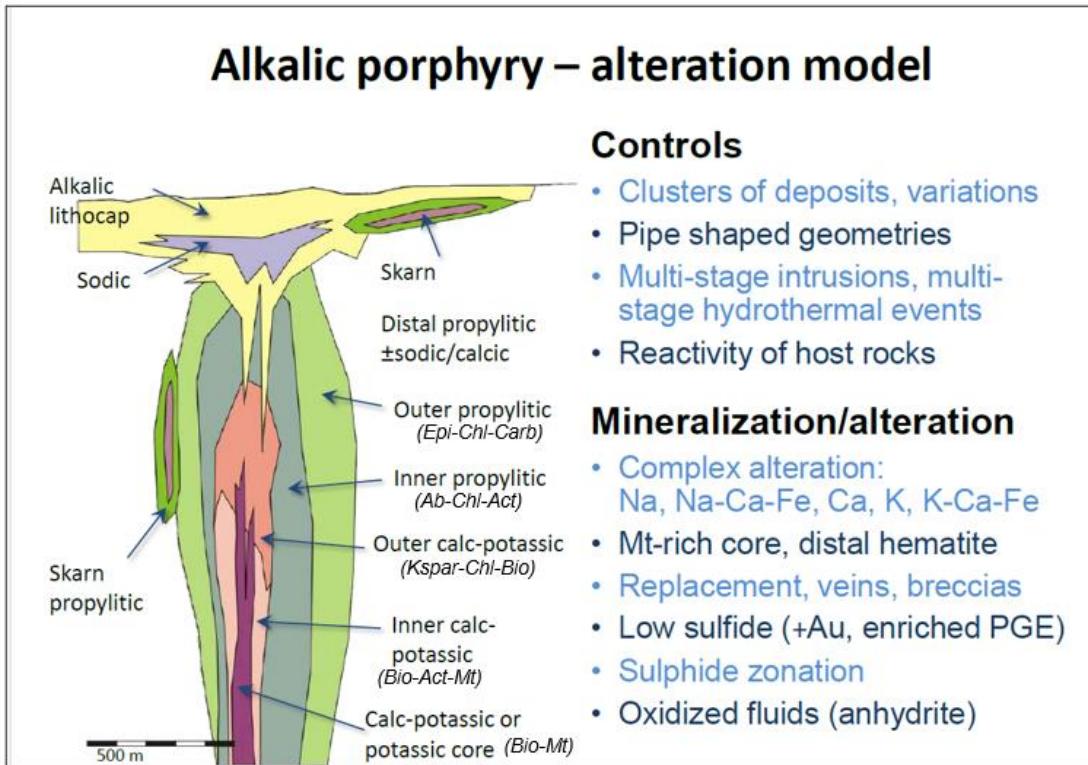




Figure 19: Porphyry Cu-Au-Ag deposit types of the northern Golden Triangle (and Romios' claims as of April 2025).

**Figure 20: Alteration patterns of calc-alkalic porphyry deposits
(from Devine, 2011. Scale bar is 500 m)**

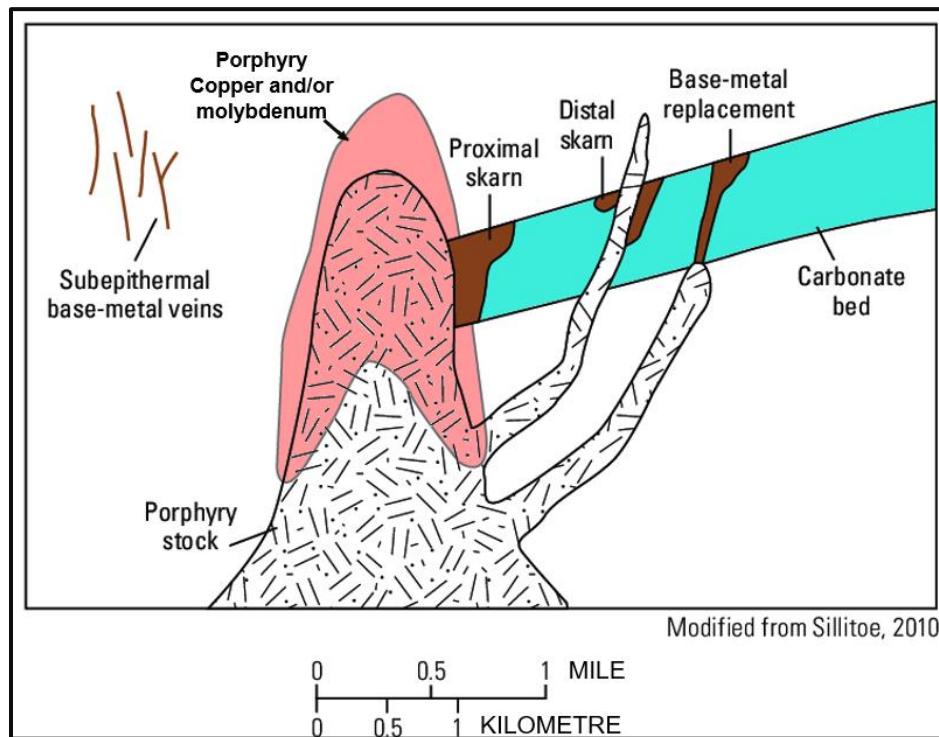


Figure 21: Alkalic porphyry alteration model (after Chamberlain, 2010)

assemblages and MACE (Magnetite, Albite, Chlorite and Epidote) alteration dominant in distal zones.

8.2 Skarns

Skarn deposits are formed by the metasomatic replacement of limestone, dolomite and calcareous rocks by an interaction with hot, magmatic fluids, resulting in a generally coarse-grained, calc-silicate-rich metamorphic rock. Such deposits formed in the rocks surrounding an intrusion are termed exoskarns while those that formed in the margins of the intrusion itself are termed endoskarns. Skarns have historically been important sources of copper, iron, tungsten, and occasionally gold and other metals. They typically occur at or close to the contact of granitoid intrusions with calcareous rocks (proximal skarns) but can form some distance away where hydrothermal fluids have migrated along faults or permeable formations (distal skarns) (Figure 22). The causative intrusions in porphyry copper deposits commonly create skarn deposits as well, e.g., Yerington, Nevada; Bingham Canyon, Utah; Antamina, Peru. The wide variations in the possible compositions of the intrusion and the affected country rock creates a very wide range of skarn types based on their silicate mineralogy, ore mineralogy, location, etc. The following discussion will focus primarily on the type of skarns evident at Trek South, that is Cu-W skarns developed in calcareous metasediments near a granitoid intrusion.

Figure 22: Simplified drawing of a skarn-porphyry system
(by the USGS, after Sillitoe, 2010).

The most common calc-silicate minerals in skarns are proximal garnets and distal pyroxene with local amphibole, all of which tend to show a variation in composition away from the pluton margin; garnets for example tend to be red near the pluton and green farther away, reflecting a change from Fe^{3+} to Fe^{2+} and providing a prospecting vector towards the deposit core (Meinert, 2023). All of the garnets noted at Trek South so far are red. Quartz and calcite are common constituents of most skarns as well, including those at Trek South. Pyrite and chalcopyrite are predominant near the source intrusion and transition into $\text{Cp} > \text{Py}$ away from the contact and finally to bornite in wollastonite zones near the marble front. The skarns at Trek South are unusual in having both copper and tungsten (scheelite) mineralization. Tungsten is not reported from the other mineralized skarns at the alkalic porphyry deposits in this region (e.g., Galore Creek). Copper-dominant skarns are typically associated with I-type, magnetite-series, calc-alkaline, porphyritic intrusions, forming relatively oxidized skarn mineralogy dominated by andraditic garnet. Tungsten-dominant skarns are also associated most often with calc-alkaline intrusions that are coarse-grained and surrounded by large, high-temperature metamorphic aureoles indicative of deep-seated emplacement. These different intrusive styles of the copper and tungsten-dominant skarns are seemingly at odds in skarns such as Trek South which contain both Cu and W. However, as noted by Newberry and Swanson (1986) and Meinert (1993), “the main difference between plutons associated with copper and tungsten skarns is not their oxidation state, tectonic setting or magma source rocks but rather the amount of crystallization. The degree of crystallization in turn is directly related to the depth of formation and timing of fluid separation.” The combination of copper and tungsten mineralization in these skarns may be unexpected in an alkalic porphyry environment, nevertheless, there are a number of Cu-W skarn deposits known worldwide, some of which may provide clues to the controls on the Trek South skarns. These include the very large Zhuxi deposit in China, the Dushiling W-Cu skarn in China, related to calc-alkaline intrusions, and the Yamaguchi skarn in Japan. The Zhuxi deposit exhibits a zonation from Cu to Cu-W to W dominant mineralization corresponding to increasing temperature of formation from moderate to high approaching the source pluton (Chen et. al., 2012).

At this point there are only two known or suspected plutons of any size at Trek South: 1) the Eocene, $\sim 600 \times 250$ m zoned diorite to granodiorite pluton in the eastern portion of the Trek South zone; and 2) the ≥ 800 m wide buried pluton inferred from the aeromagnetic high in the central portion of Trek South. To date there is no indication of a significant metamorphic aureole around the Eocene pluton nor an increase in skarnification or any other alteration towards it, and it does not have an aeromagnetic high indicative of a magnetite-series intrusion. The buried intrusion inferred from the aeromagnetics has a prominent magnetic high and underlies numerous occurrences of skarnified volcanic rocks. A fuller understanding of the extent of the Trek South skarn and its relation to a source pluton will require drilling and more scientific study. For now, a general description of typical skarns should be kept in mind when planning such work.

In oxidized skarns, andraditic garnet exceeds pyroxene, the scheelite is molybdenum poor, and epidote may be the dominant hydrous mineral; these features suggest that the skarns at Trek South are of the oxidised variety.

8.3 Eskay Creek and/or Kuroko-type Massive Sulphide Deposits

The TOE Zone on the Trek Claims was initially thought to be a Kuroko-type deposit due to the style and textures of the mineralization and the polymetallic composition, although the “absence of felsic vulcanism on the property and the irregular, structurally-controlled nature of the pyrite-sericite-silica alteration...” allowed for alternative interpretations (Awmack, 1991). Although barite occurrences are reported by Lorica at the Toe Zone, a feature consistent with Kuroko-type deposits, neither their assay results nor Romios’ contain anomalous barium levels. Romios’ mapping shows several felsic volcanic horizons throughout the predominantly basaltic Toe Zone stratigraphy, no barite has been found at the site, and a thick unit of pyritic argillite occurs in the centre of the zone; these features are considered more consistent with the Eskay Creek variety of shallow-water massive sulphide deposits than the Kuroko-type. Given the early stage of exploration and limited understanding of the Toe Zone, however, brief descriptions of both Eskay Creek and Kuroko type deposits are given below.

8.3.1 Eskay Creek Deposit Type

The Eskay Creek deposit is located 68 km SE of the Toe Zone and was one of the highest grade Au-Ag mines in the world while it operated from 1994-2008. The site is now being redeveloped by Skeena Gold & Silver as a potential open-pit mine (see Section 23 - Adjacent Properties). The Eskay Creek Deposit is considered to be either a precious metals-rich volcanogenic massive sulphide (VMS), or an example of a shallow, subaqueous hot spring deposit, a style of mineralization only recognised in the 1990s and considered transitional between hot-spring Au-Ag deposits and deeper water VMS exhalites such as the Kuroko and Besshi styles (Massey et. al., 1999 and references therein). The deposit contained very high levels of gold and silver as well as a suite of antimony, mercury and arsenic sulphides and sulphosalts, features more in common with an epithermal, low-temperature origin.

Although the Eskay Creek deposits are hosted in lower to middle Jurassic rocks of the Hazelton Group there is no reason to believe that they could not also occur within other stratigraphic sequences. The nearest mapped Hazelton Group rocks lie 11 km NE of the Toe Zone, and although the Toe Zone area is depicted as Stuhini Group rocks on the BCGS maps, the stratigraphy here has not been mapped in any detail or age-dated.

Stratiform mineralization at Eskay Creek is hosted by black carbonaceous mudstone between felsic and mafic volcanic flows whereas the underlying stockwork and discordant mineralization is found in the felsic volcanics (see Figure 23, taken from technical report on Skeena Gold + Silver’s website). The main sulphide minerals are pyrite, sphalerite, galena, and chalcopyrite, although arsenopyrite and mercury-antimony sulphides and sulphosalts are significant in some

zones. Gold occurs mixed with silver as electrum and amalgam and silver occurs mainly in the sulphosalts. Barite occurs as isolated clasts in the massive sulphides as well as rare massive accumulations of limited extent (Adaszynski et. al., 2023).

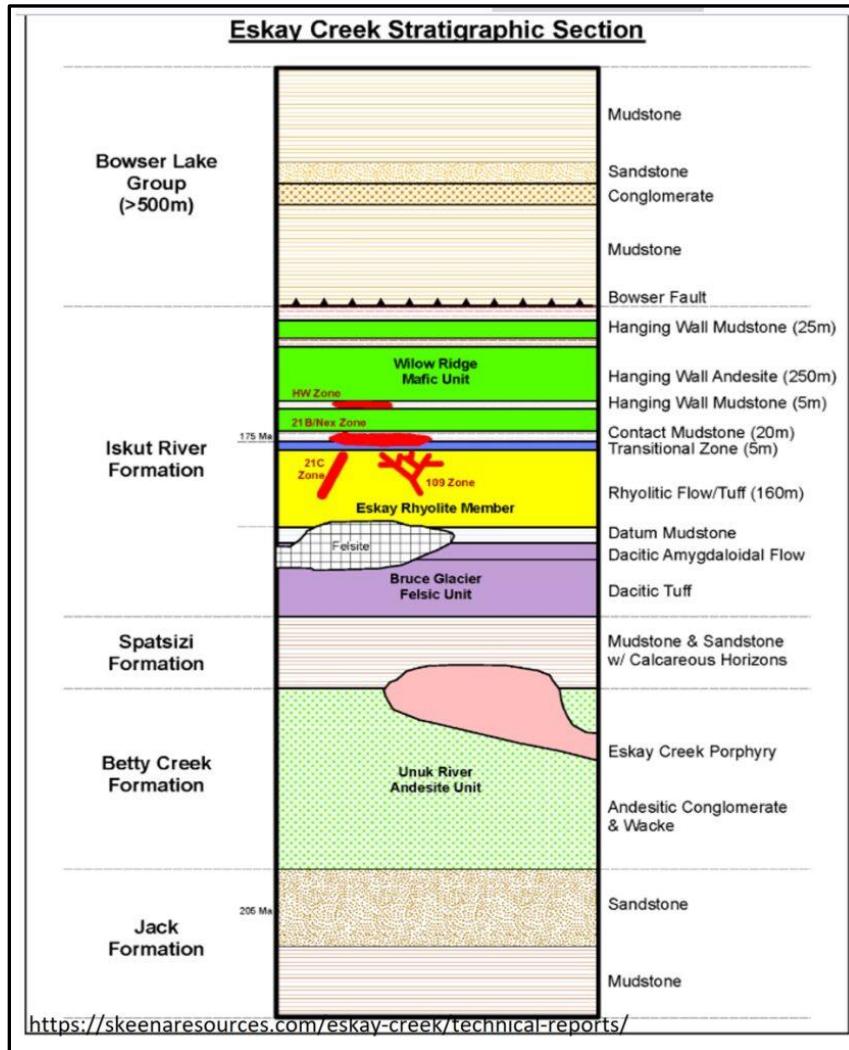


Figure 23: Simplified stratigraphy of the Eskay Creek deposit.

The stratigraphic setting of the mineralization at the Toe Zone, the polymetallic nature of both the stratiform and vein-type mineralization, the high silver and gold values, the presence of high antimony and the locally elevated mercury are all features considered supportive of the Eskay Creek deposit model for the Toe Zone.

8.3.2 Kuroko Type VMS

Named for the type location in Japan, Kuroko deposits are Cu-Zn bearing VMS deposits hosted by intermediate to felsic marine volcanic rocks and associated sediments, mainly organic-rich mudstone or shale (Figure 24).

Kuroko deposits typically have an upper massive, stratiform zone of “black ore” composed of pyrite + chalcopyrite \pm sphalerite \pm pyrrhotite \pm galena \pm barite \pm tetrahedrite-tennantite \pm bornite with a lower stratiform zone of “yellow ore” composed of pyrite + chalcopyrite \pm sphalerite \pm pyrrhotite \pm magnetite, all underlain by a stringer zone of pyrite + chalcopyrite with Au + Ag. Mineralization occurs predominantly near the top of a felsic pile and the favourable horizon may be marked by a pyritic, siliceous exhalite. Gravity transported breccias are common and mudstone occurs in the hanging wall of the major deposits. Mineralization is enriched in Cu, Zn, Pb, Ba, As, Ag, Au, Se, Sn, Bi, and Fe.

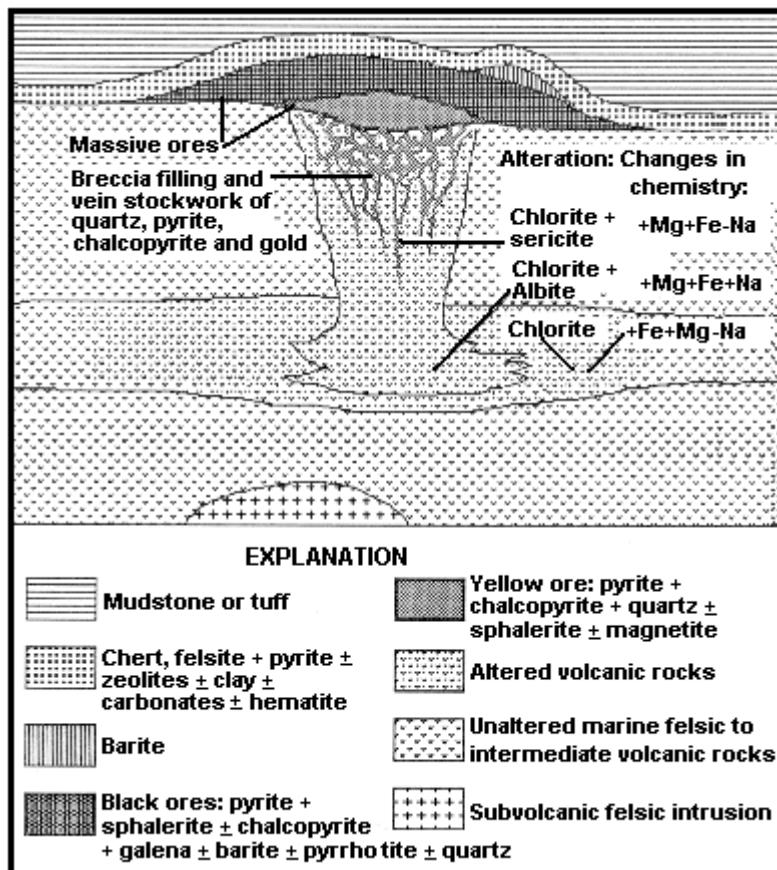


Figure 24: Cross-section diagram of a Kuroko VMS deposit
(from Franklin, et. al., 1981)

While the Toe Zone has some similarities to the Kuroko model noted above, the mineralization lacks the elevated Ba, Bi, Se and Sn values typical of Kuroko, and is enriched in metals like Sb and highly enriched in Au and Ag at levels more typical of Eskay Creek deposits. Nevertheless, the current understanding of the Toe Zone is at an early stage and further work will no doubt refine the genetic model and determine which deposit model it best fits.

9 EXPLORATION

9.1 Previous Operators Exploration Work

The known work by previous operators in the Trek claims area included basic prospecting, trenching, geological mapping, soil and silt sampling, VLF and magnetometer surveys, and two small drill programs, one that tested the Gully Zone, and a program of three holes drilled near the North Zone that were all abandoned before reaching their target depths. This pre-Romios work was described in Section 6.2 of this report and summarised in Table 2.

9.2 Romios' Exploration Work

9.2.1 2006 Exploration

In 2006, Romios contracted Equity Engineering Ltd. to undertake their first exploration efforts at Trek and they carried out a large soil geochemical survey, geological mapping, and a minor silt sampling program, with emphasis in the area of the West and Wall Zones (Simmons, 2006). This work led to the discovery of the more extensive Tangle Zone which now encompasses the Wall and West Zones (Figures 6 and 14).

SOIL SAMPLING: 398 soil samples were collected from the B-horizon which was reported to be well developed in the area of the West and Wall Zones. Sampling lines were spaced 100 m apart, oriented at 300°, with samples taken at 25 metre intervals (see Figure 28). In addition, 49 samples were collected along a contour line at 1200 m elevation on the north side of Sphaler Creek. Geochemical results show a semi-continuous Cu-Au+/-Ag, As, Mo, Pb, and Zn anomaly between the West and Wall Zones, extending up to ~450 m west from the western boundary of GCMC's SPHAL claims. Similarly, mineralization in the areas known as the Heel, Grey, Arch and Pickle Zones was found to be largely continuous between these sites and they were combined into the Tundra Zone as a result of this program. The 1200 m contour soil sample line on the north side of Sphaler Creek did not return anomalous results.

GEOLOGY: Mapping and prospecting in the area of the (Lower) North Zone led to the discovery of an extension of this mineralization onto Romios' claims. Disseminated pyrite, chalcopyrite and pyrrhotite with associated malachite and azurite surface coatings were found to be related to

orthoclase megacrystic syenite intrusions. This was the initial recognition of part of what would become part of the Trek North Zone.

CLAIMS: Four additional claims - 528739, 528740, 528741, 529446 - were added to the property along the southwest corner of the original core claim block in 2006 claims, in addition to one claim, 511908, that had been staked in 2005.

9.2.2 2007 Exploration

In 2007, a helicopter-borne DIGHEM aeromagnetic and electromagnetic survey was completed by Fugro Airborne Surveys over most of the Trek claim block, including the current area of the Trek South prospect (Awmack, 2008). No other work was done this year.

AIRBORNE GEOPHYSICS: Flight lines were oriented at 110° and spaced 100 m apart in the northern part of the claims and 200 m apart in the part south of the Trek South area, with a mean sensor terrain clearance height of 30 m. 418 line-kilometres were flown in total. The resistivity survey detected a prominent low along the major fault that Trek Creek follows, as well as the conductive shale and argillite of the Stuhini Group in the SW corner of the property, and the Stikine Group sediments east of Trek South. A moderate resistivity low was detected in the NE portion of the Trek South target area, extending >500 m north-northeast of the main northern skarn zones. The aeromagnetic survey clearly delineated the >800 m wide, circular magnetic high over the relatively flat ground at Trek South, now believed to reflect a buried pluton ± an associated potassio-magnetite alteration zone. A large circular magnetic "doughnut" with a central low ringed by a magnetic high overlies the large Eocene intrusion in the SW part of the claims but this feature appears to be in large part due to topographic effects on the survey. Modest magnetic highs occur in the Tundra-Camp zone area as well as the NW and NE corners of the claim block. The response over the southern portion of the current area of the Trek South target may have been somewhat masked by the depth of the Trek South glacier in the data processing. No obvious magnetic feature linked to Trek North was identified, this zone is actually within an irregular magnetic low area, and topographic/sensor height effects on the magnetic pattern appear to be minimal.

9.2.3 2008 Exploration

DIAMOND DRILLING & OTHER WORK: In 2008, field work began with a mapping, geochemical rock sampling, and prospecting program, and a diamond drilling program was then initiated with six helicopter-assisted diamond drill holes totaling 1,408.6 m on the (Trek) North Zone (Bernales et. al., 2008). These first-ever drill holes at Trek North intersected strong copper-porphyry and breccia-hosted mineralization, assaying up to 1.49% Cu, 0.77 g/t Au and 16.76 g/t Ag over 46.6 m.

GEOLOGY: The 2008 program included property-wide prospecting, geological mapping and rock sampling with a focus on the (Trek) North Zone. Several new mineralized zones were identified including the Northeast and Upper Northeast Zones proximal to the (Trek) North Zone, and

elsewhere on the property (e.g., the DCP Zone), and 145 rock samples were collected and analysed, mainly from the (Trek) North Zone. Drilling in later years indicated the mineralization and alteration is largely continuous between the North Zone, Northeast Zone and the Upper Northeast Zone and they are now collectively referred to as Trek North.

GROUND GEOPHYSICS & LINE-CUTTING: A geophysical survey consisting of 4.3 km of magnetic and Time Domain Electromagnetic (TDEM) surveys as well as 1.35 km of Spectral IP was undertaken between the North and Northeast zones on Romios' behalf by Clear View Geophysics. The five IP survey lines were fairly short due to the rugged topography of the area, with lengths ranging from ~100 to 350 m. Three chargeability high anomalies were detected. However, as these were relatively weak, <10 mV/V, the IP work was curtailed. The TDEM survey did not detect any well defined near-surface anomalies. A Z-component map produced a conductive trend that appears to coincide with one of the weak IP anomalies.

A further 8.2 km of ground magnetic surveying was done over "Anomaly E", a small cluster of EM "intercepts" detected west and northwest of the North Zone and noted in an internal report on the 2007 Fugro Mag-EM survey by J. Klein (included in Bernales et. al., 2008). Weak magnetic highs were detected in this area but no explanation was determined for them or the EM responses at the time.

9.2.4 2009 Exploration

DIAMOND DRILLING: In 2009, nine NQ and HQ size, helicopter-assisted diamond drill holes were drilled on the North, Northeast and Upper Northeast Zones (all part of Trek North now) for a total of 2,730 m (Chadwick and Guszowaty, 2009). This program extended the known mineralization over 400 m to the east (See Section 10).

GEOLOGY: Geological mapping in 2009, building on the results of the 2008 program, further refined the stratigraphy and alteration patterns in the North Zone area as well as attempting to clarify the syn-mineralization structures and the post-mineral offsets. A major fault trending north past the North Zone outcrops was found to offset Stuhini Group submarine volcanics to the east from younger, subaerial to submarine transitional facies to the west. This fault was interpreted as part of the main Trek Fault Zone (TFZ) whereas the more linear structures cutting the Northeast and Upper Northeast Zone area, previously interpreted as the continuation of the TFZ, were now re-interpreted as post-mineralization faults. The sequence of breccias, hematized conglomerates, and tuffs west of the fault were found to be intruded by a suite of highly alkaline, often pseudo-leucite bearing phonolitic intrusions, a relatively unique phase that is characteristic of the Galore Creek deposit geology.

9.2.5 2010 Exploration

DIAMOND DRILLING & OTHER WORK: In 2010, Romios completed 4,047.4 m of drilling in eight holes, along with soil and rock sampling, and 4.8 line-kilometres of deep-penetrating Titan 24 MT/DCIP ground geophysics conducted across the North and Tangle Zones (Chadwick, 2011).

GEOPHYSICS: Three E-W lines of Titan24 Magnetotelluric-DCIP geophysical surveys were completed by Quantec Geoscience Ltd. across the North Zone, spaced 200 m apart, and one line was undertaken over the Tangle Zone, oriented at 018° (Figure 25) (Tournerie and Eadie, 2010). A deep conductive (and low resistivity) zone was identified at the North Zone by this survey (Figure 26), approximately 1 km below surface with some smaller offshoot targets at shallower depths, ~500 m. The IP survey on these lines was read to depths of ~400-500 m below surface and produced only weak-moderate chargeability highs. A moderate high was partially delineated at the west end of Line 1N approaching the North Zone and a semi-continuous moderate chargeability zone was detected on Line 3N at about 300 m depth; no significant chargeability anomaly was found on the northernmost line, 2N. Due to the rugged topography in portions of the Trek North Zone the TDEM-IP survey was not extended over the North Zone exposures or the area to the west, and the line length limited the depth of penetration. The TDEM-IP line surveyed at the Tangle Zone returned higher chargeabilities than the North Zone response as well as three IP anomalies overlying the deep MT response (Figure 27). The drill holes shown on Figure 27 at the Tangle Zone were proposed in 2010 and two holes were drilled in 2011 at the approximate location of the two solid line drill hole traces; see 2011 Exploration Section below.

GEOLOGY: Geologic mapping in 2010 was focussed on the Tangle Zone and Trek North Zone, and along the northern and north-eastern boundaries of the Trek property. Mapping at the Tangle Zone identified linear outcrops, striking up to 100 m in length, of chalcopyrite and bornite-bearing, calc-potassically-altered feldspar porphyry. Adjacent to the mineralized outcrops were variably-altered augite-phyric rocks.

Field mapping in the northeast of the Trek property identified magnetite veins ± sulphide mineralization in heterolithic clastic rocks. These rocks also contained disseminated pyrite and chalcopyrite associated with increased albite and epidote alteration.

Limited mapping within the North Zone identified a 20 m wide lineament that strikes northwest-southeast through the Upper Northeast subzone. This lineament also coincides with a visible lineament described by abrupt relief changes in the aerial photography, and with broken rock encountered at projected depths within the drill holes TRK10-02, TRK10-03, TRK10-05, and TRK10-06. The lineament was named the Northeast Hanging Wall Fault.

SOIL GEOCHEMISTRY: Soil sampling was conducted in 2010 in a triangular area extending from Sphaler Creek northeast to the Upper Northeast Zone and then east from there. Anomalous gold and copper values were largely confined to the vicinity of the NNE-trending stream gully/fault extending from the Lower North to Upper Northeast Zone. In addition, twenty soil samples were collected to fill a gap in the soil grid coverage over the Tangle Zone and ~1/2 of these samples returned highly anomalous copper and gold values, helping to more fully define this anomalous area. Combined with the results of the soil samples collected between 2006 and 2010, the data reveals a zone of anomalous copper and silver in soil approximately 900 m long (NE-SW) and 600

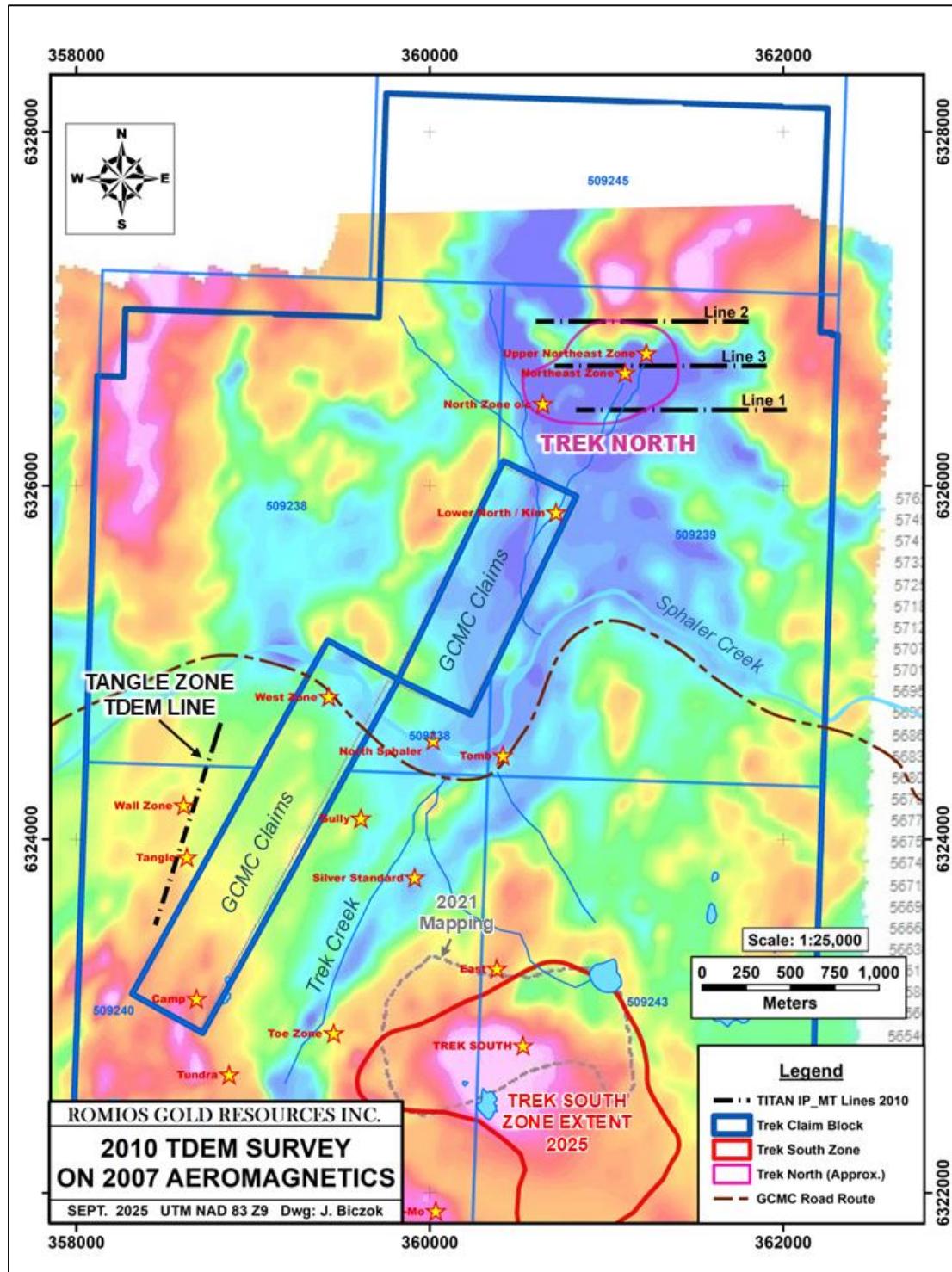
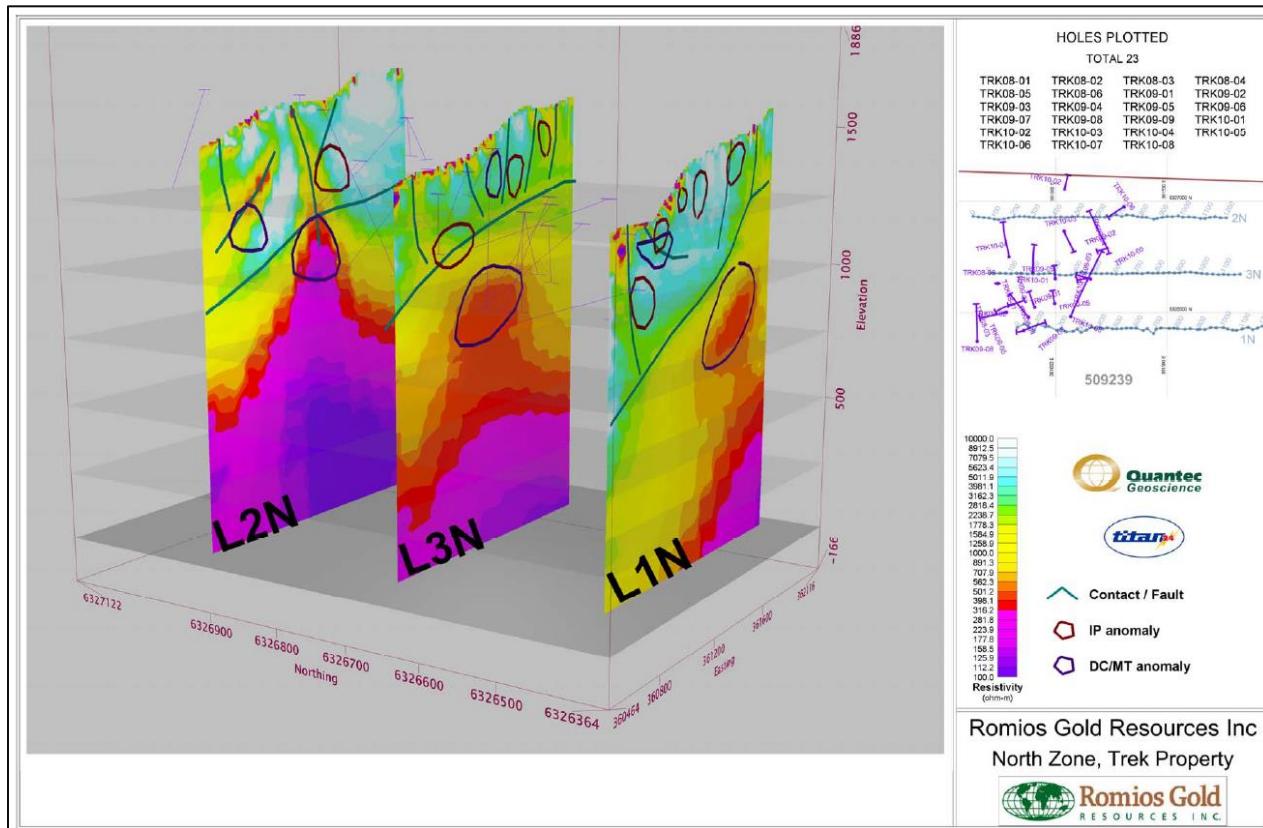
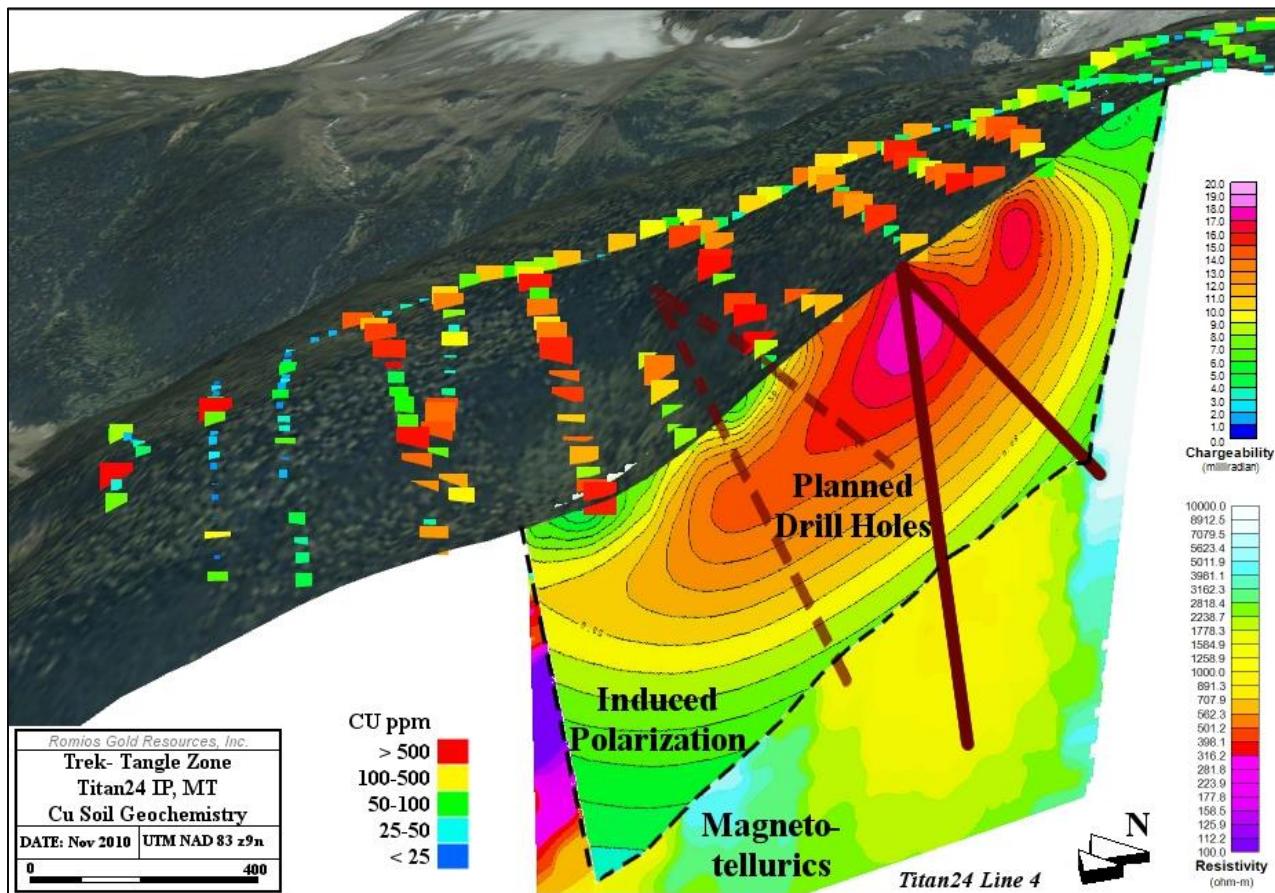



Figure 25: 2010 TDEM Survey Lines overlaid on 2007 Aeromagnetic Map (reduced to pole (RTP) by B. Lo in 2022)

Figure 26: Geosoft 3D view of the Trek North MT model with interpretation and DDH
(Prepared by Quantec Geoscience, presented in Chadwick (2011))


m wide (NW-SE) (Figure 28). The southern 600 m of the grid area sampled returned generally low results. Although the two northernmost soil lines also returned poor results, there is an ~300 x 400 m area between the soil grid and Sphaler Creek that remains unsampled and warrants a continuation of the soil sampling program. This area is underlain by a resistivity low from the 2007 Fugro survey, is immediately west of the mapped monzonite-syenite pluton hosting the West Zone, and has at least one outcrop of the same intrusive rocks.

9.2.6 2011 Exploration

DIAMOND DRILLING: In 2011, Romios drilled 7,906.5 m in 13 holes at Trek North (North, Northeast and Upper Northeast Zones) and two holes at the Tangle Zone (Close and Danz, 2012) (see Section 10).

GEOPHYSICS: A 1.4 km-long IP/magnetics line and 215 m of downhole magnetic geophysical surveying were completed in 2011, as well as extensive surface mapping and sampling. The IP-magnetic survey line was located ~200 m south of and parallel to the southernmost Titan24-DCIP line surveyed at Trek North in 2010 in order to test for south and southwestward continuation of the anomaly. The 2011 survey detected a near-surface IP anomaly (chargeability high, resistivity

low) near the western end of the line, extending down to ~100 m depth, as well as a resistivity low beginning at ~400 m depth and extending to >600 m.

Figure 27: Tangle Zone compilation map of Cu-in-soil results overlying IP and MT results, facing SE, Romios 2010. (2 DDH were drilled in 2011 at the approx. location of the 2 solid line planned DDH traces. DDH TZ11-01 was vertical and 597 m in length)

GEOLOGY: Detailed geological mapping of the lithologies and alteration was conducted on much of the Trek North and Tangle Zones with a strong focus on mapping the structural geology. A comprehensive geology map of the property was produced at this time.

CLAIMS: One claim, ANDREI A (#844944) was added to the southeast corner of the Trek block in 2011.

9.2.7 2012-2017 Exploration

No significant work was carried out on the Trek property after the 2011 program until Romios resumed work with initially minor field programs in the area in 2018. It was in 2011 that development work at Galore Creek was suspended due to a dramatic escalation in the expected

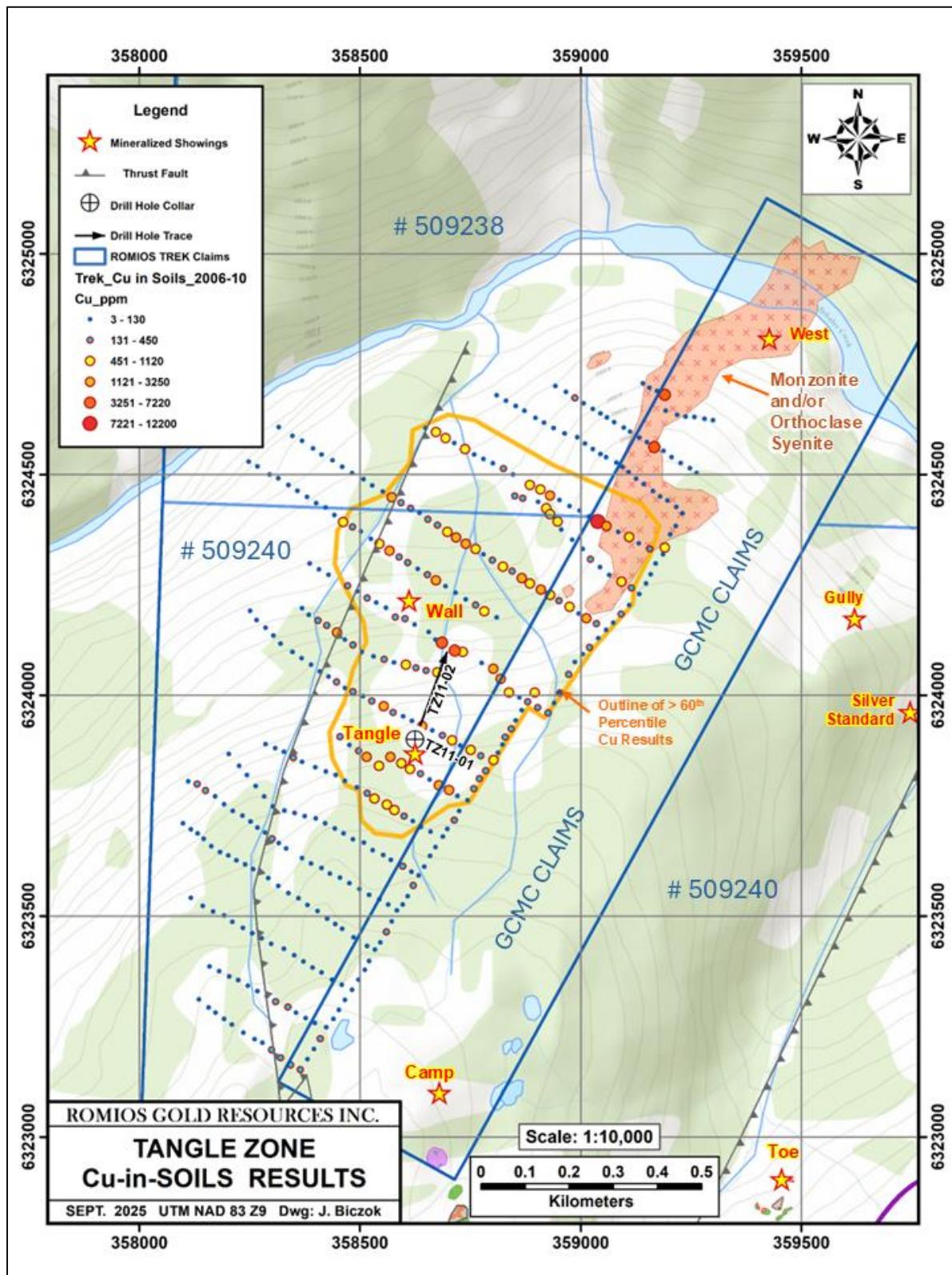


Figure 28: Tangle Zone copper-in-soil results

capital costs, reportedly from \$2 billion to \$5.2 billion. In 2018, NovaGold's 50% share in the Galore Creek project was sold to Newmont Corp. and the project then underwent renewed work which is now nearing completion of a pre-feasibility study.

9.2.8 2018 Exploration

GEOLOGY: In 2018, the 4-person Romios exploration team spent one day re-examining the Tundra-Camp Zone area and collected two rock samples (Biczok, 2018). Mapping outlined a hornblende diorite intrusion at least 150 m x 200 m in area with locally well-developed epidote alteration along fractures and one outcrop with large sprays of acicular amphibole alteration. Trace malachite, pyrite and chalcopyrite were noted at one outcrop of the diorite. This was the first appreciable work on the Trek claims in seven years and an introduction to the area by the current exploration personnel.

9.2.9 2019 Exploration

GEOLOGY: In 2019, during a one-day visit to the southern Trek claims by a Romios crew working in the region, a large area of skarn-type veins and gossans was noted on the east side of the Trek Creek headwaters in an area recently exposed by a melting glacier (Biczok, 2020). This discovery was the impetus for engaging a consulting firm for more work in the area in 2020.

CLAIMS: Two claims, TREK SOUTH, #1068808, and TREK SOUTH 1, #1068811, were added along the southern margin of the Trek claim block in 2019.

9.2.10 2020 Exploration

GEOLOGY and HYPERSPECTRAL STUDIES: In 2020, due to the Covid-19 pandemic, no company personnel travelled to site. Rather, limited follow-up work was carried out by a crew working for HEG & Associates in the area. As noted in Sec. 7.6.2, this crew spent several days mapping and sampling two broad swaths, one along the upper reaches of Trek Creek and the other across the rocky slopes of the Trek South target area to the east (Figure 14). The main focus of this program was to collect numerous rock samples for hyperspectral analysis. Using a Terraspec instrument this work documented widespread areas of porphyry-type alteration minerals such as high-temperature white mica, potassic white mica, and epidote in both areas (unpublished internal report by John Ryan). These encouraging results provided added incentive to explore this area more thoroughly in 2021.

9.2.11 2021 Exploration

GEOLOGY: The results of the 2019 and 2020 work led to an expanded geological mapping and sampling program at Trek South, conducted by Romios personnel in 2021 (Biczok, 2021). This work outlined a zone at least 1 km wide zone of intense epidote alteration and an overlapping ~800 m wide stockwork of 1-6 cm wide pyrite-quartz veins with substantial Cu, Au, Ag, +/- Bi, Te, and W values in many of the sampled veins. This zone is believed to represent the outer,

propylitic zone of a porphyry Cu-Au system and this important realisation was the impetus for a concerted 2022 geological and geophysical program.

CLAIMS: As a result of the encouraging geology outlined at Trek South, ten additional claims – TREK S1 to TREK S10 - were staked along the southern margin of the claim block in 2021.

9.2.12 2022 Exploration

GEOPHYSICS: In 2022, Romios contracted with Simcoe Geoscience for a deep-looking Alpha IP survey along three lines across the apparent porphyry copper alteration zone, and the adjacent Cu-W skarn area, outboard to the Trek South glacial toe. The three lines included two E-W lines, 2.0 and 2.3 km long, and a single N-S line 1.3 km in length, for a total of 5.6 line-km. The survey detected a strong (40 mV/V) chargeability high and coincident resistivity low >850 m long, and ~500 m wide, extending to greater than 650 m depth, centred on the porphyry-skarn area (Figures 29 and 30) (Biczok, 2023). A subsequent magnetotelluric (MT) survey conducted by Phoenix Geophysics along one of the E-W IP lines confirmed the presence of the anomaly and extended the apparent depth to approximately 2 km.

GEOLOGY: Geological mapping in the northeast section of the Trek South target area in 2022 identified a previously undocumented and extensive area of variably skarnified calcareous siltstone ~80 x 130 m in size, and three nearby, highly skarnified (garnet-epidote +/- pyroxene) bioclastic limestone horizons at least 17 m wide variably mineralized with chalcopyrite, scheelite and pyrite (Biczok, 2023). Twenty-one samples returned WO_3 values between 0.04% and 0.68% WO_3 , averaging 0.24% WO_3 . Minus one exception, the 18 samples with >500 ppm WO_3 (i.e., one lb/t) averaged 0.227% Cu within a range of 0.07% to 0.45% Cu. The presence of tungsten mineralization was unexpected in this porphyry target area but encouraging, given the strong values of Cu-W present relatively distal (200-300 m) to the presumed source pluton.

The 2022 mapping also infilled and expanded the mapped area of strong epidote alteration and overlapping quartz-pyrite veins at Trek South to 1.6 km in east-west extent and up to 1 km in N-S extent (the full extent is obscured by the Trek South glacier abutting the southern margin of the altered and mineralized outcrop area). Detailed mapping was also conducted at the Toe Zone and this data, along with the high grade Au-Ag-Cu-Pb-Zn-Sb assay values returned from the concurrent sampling program, supported the interpretation of this zone as an Eskay Creek type occurrence.

9.2.13 2023 Exploration

GEOLOGY: In 2023, due to financial constraints, only a single day was spent on the Trek claim block. This was focussed on detailed chip sampling of the tungsten-bearing, limestone-hosted skarns located in the northeast corner of the Trek South target. A shortwave ultraviolet light was used under a dark covering to identify the scheelite grains disseminated throughout the skarns. The scheelite grains were typically 2-3 mm across and fluoresced a bright bluish-white colour under the ultraviolet light. The northernmost of the three skarnified limestones returned a

weighted average assay result of 4.61 m @ 0.37% WO₃ (0.296% W) and 0.24% Cu, including 1.7 m @ 0.64% WO₃ (0.51% W) and 0.37% Cu. The less consistently mineralized “South Skarn” outcrop returned a chip sample assay of 0.4 m @ 0.48% WO₃ and 507 ppm Cu (Biczok, 2024).

No work was conducted on the Trek property in 2024 due to budgetary constraints.

9.2.14 2025 Exploration

A 2-3 person team of Romios personnel spent 7 days mapping, prospecting and collecting rock samples on the Trek claims, primarily at Trek South, with a ½ day visit to the southern extension of the Toe Zone (Biczok, 2025). Some results of this work are still being received and analysed at the time of this report, however, three significant discoveries were made during this time:

- 1) At least two feldspar-biotite-phyric granitoid dykes 2-3 m wide that appear to be contemporaneous with the mineralizing-alteration event at Trek South were located and sampled. The dyke exposed at Trek South cuts the propylitic alteration but is itself cut by the later, mineralized quartz-pyrite veinlets. The BCGS collected a large sample from one dyke for age-dating to determine if it is indeed the same age as the Galore Creek plutonic suite. Several similar dykes are exposed on the steep mountainsides ~400-900 m SW of Trek South.
- 2) Traverses up and across the glacier on the south side of the Trek South zone revealed the presence of copper-bearing boulders and shattered rock, for the most part epidote altered and/or skarnified, in a medial moraine emanating from a crevasse covered, sub-ice ledge 700 m south of the exposures in front (north) of the Trek South glacier toe. Epidote alteration and local skarnification of the bedrock immediately adjacent to the west side of the glacier was also observed. This discovery greatly expanded the potential size of the Trek South mineralized system.
- 3) Mapping of a peak ~900 m SW of Trek South identified a widespread area dotted with large masses of epidote+/-garnet alteration up to 1.5 m long x 0.5 m wide, and a feldspar-biotite-phyric dyke very similar to the one noted above in item 1. The discovery of this “SW Peak” alteration greatly increased the size of the alteration envelope in the SW direction.

9.3 Geological Mapping Summary

The Trek property has been mapped at various times by BCGS geologists, generally at a reconnaissance level, providing a broad outline of the geology. Mining industry geologists have mapped portions of the property in more detail over the past four decades and the most detailed and substantive work by far was compiled and presented in Romios’ 2011 assessment report at a scale of 1:5,000 (Close and Danz, 2012). This map provides detailed coverage of the geology around Trek North and the areas south of Sphaler Creek encompassing the Tangle Zone, Tundra Zone and Toe Zone areas. A simplified version of this map is presented in Figure 9. The Trek South area was largely covered by snow and glacial ice in 2011 and was only mapped in some

detail in the 2021-2022 period at a scale of 1:6,000 (Biczok, 2021) and 1:2,500 (Biczok, 2023). A summary map of this work is shown above in Figure 12. Some portions of the property remain to be mapped in detail (e.g. the areas SW and SE of Trek South) and some areas should be remapped to resolve various discrepancies that have arisen over the years (e.g. the Tundra zone).

9.4 Soil Geochemistry Summary

Extensive soil sampling surveys have been undertaken over portions of the property, primarily and most successfully in the forested area around the Tangle and Wall Zones. The major programs included the collection of 210 soils samples by Teck in 1980, 1,483 samples by Lorica Resources in the late 1980s, and 398 samples by Romios in 2006.

Soil sampling in the area west of Trek Creek and south of Sphaler Creek has been successful in outlining anomalies over and around known showings and extending into nearby forested areas. Given the demonstrated suitability of this exploration technique, extension of the most recent grid sampling is warranted north to Sphaler Creek and south past the Tundra Zone. Soil sampling in the steeper, rocky areas north of Sphaler Creek has had limited success but may be worthwhile in certain vegetated areas, otherwise talus fines sampling might be more appropriate. All of the past soil samples should be digitized as best as possible and used to guide any future fill-in or expanded sampling programs.

For additional information on soil sampling methods and quality see Section 11.4.

9.5 Rock Sampling Summary

Romios' contract geologists and prospectors have collected numerous rock samples for analysis from outcrops on the property including 453 from 2006-2011, with 193 chip samples taken in 2011, primarily in the Trek North area, and a further 143 samples taken from 2018 to 2025. Samples taken by previous explorers are listed in Table 2 and total at least 605 samples. Samples have been taken, as might be expected, in obviously mineralized or altered areas. A compilation of all results showing gaps in areal coverage and possible trends in the major metals and trace elements may prove useful in future.

For additional information on rock sampling methods and quality see Section 11.1.

9.6 Geophysics Summary

The 2007 Fugro airborne magnetic and DIGHEM V electromagnetic survey was flown at a suitable azimuth of 110° with a 100 m line spacing over the Trek North area and 200 m line spacing over the Trek South claims. The resultant maps of apparent resistivity, both 7200 Hz and 56,000 Hz, proved to be valuable in defining major faults, such as the Trek Creek fault, as well as dramatic changes in lithologies such as the sharp contact with the broad area of argillites along the western margin of the claims and the pyritic sediments along the eastern margin. The discrete EM conductors detected by this survey tend to be of short strike length and many are found along

fault zones and/or stream gullies that might reflect underlying faults. While the Fugro survey provided useful information about faults and changes in lithology, any future airborne surveys at Trek should utilize a system designed to detect the disseminated sulphide mineralization typical of porphyry deposits (e.g., ZTEM, SkyTEM).

The magnetic maps generated by the 2007 Fugro survey have proven quite useful in outlining the postulated, 800 m wide buried intrusion at Trek South and an intriguing magnetic high underlying the Tundra Zone. The quality of the data appears good and there is little indication that topography affected the data in the relatively flat Trek South and the fairly constant sloping Trek North areas (i.e., mountain tops do not show up as magnetic highs just because the sensor bird was closer to the ground as the helicopter flew over the high ground), however, the rugged topography of the large Eocene pluton in the southwest corner of the property appears to have caused some problems with removal of terrain effects in that specific area. Somewhat surprisingly, there is no magnetic high evident under the Trek North area, possibly because the mineralization there is related to a series of monzonite dykes rather than a discrete pluton.

Ground geophysical surveys such as IP, MT and TITAN 24 have also been invaluable in defining exploration targets on the property including the primary targets at Trek South (IP+MT+aeromagnetics) and a series of both shallow IP ± deep MT anomalies at Trek North and the Tangle Zone.

The Alpha IP survey on three lines over the Trek South area (Figure 29), detected strong chargeability highs and coincident resistivity lows on all lines and together they outlined a chargeable zone ~850 m long, 200 to 500 m wide extending to the depth limit of the survey at ~650 m. This IP anomaly trends NE-SW across the centre of the Trek South alteration system and has strong chargeability, often over 40 mV/V, reflecting the possibility of a significant amount of sulphide mineralization at depth.

The Priority 1 anomaly on the northern E-W line (Line 2N) occurs about 60 m north of the Cu-W mineralized North Skarn exposures. This IP anomaly forms a relatively narrow point near surface but quickly widens to ~500 m at a depth of 100-200 m (Figure 30). The Priority 1 anomalies on Lines 1N and 3E lie closer to the centre of the porphyry-style alteration. 3D modelling of the IP response by Simcoe shows the chargeability high wrapping around and through the ~800 m wide circular aeromagnetic high underlying the western portion of the alteration system. This magnetic high is believed to reflect a buried pluton that begins ~200 m below surface ± an associated potassic-magnetite porphyry-type alteration zone. A follow-up magnetotelluric (MT) survey conducted by Phoenix Geophysics on Line 1N in 2022 detected the same high-chargeability-low resistivity feature as the IP and extended this feature to a depth ~ 2 km. For more results of the geophysical results, see the chargeability inversion model sections in Section 26 – Recommendations.

Further in-fill IP surveys in the northern part of Trek South would help to refine drill hole targeting there and new surveys at the Tundra and Toe Zones would help in the evaluation of their

potential. As part of the re-evaluation of any remaining untested potential at Trek North, consideration should be given to extending IP and MT lines farther west than the 2010-11 lines in order to obtain a deeper, more complete picture of the mineralized system. This may be a challenge due to the steep cliff face at the North Zone but it may be possible with enough planning and helicopter support.

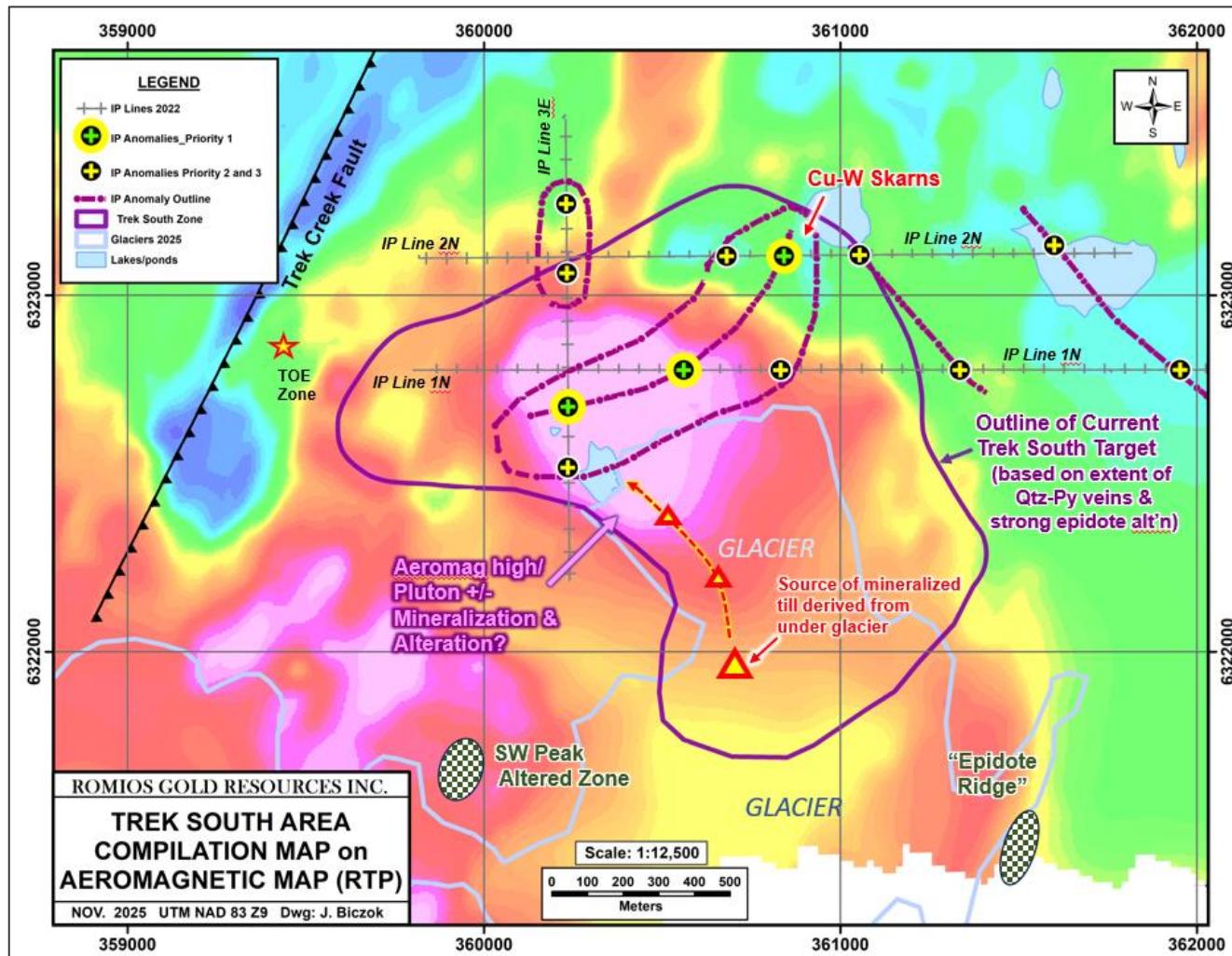
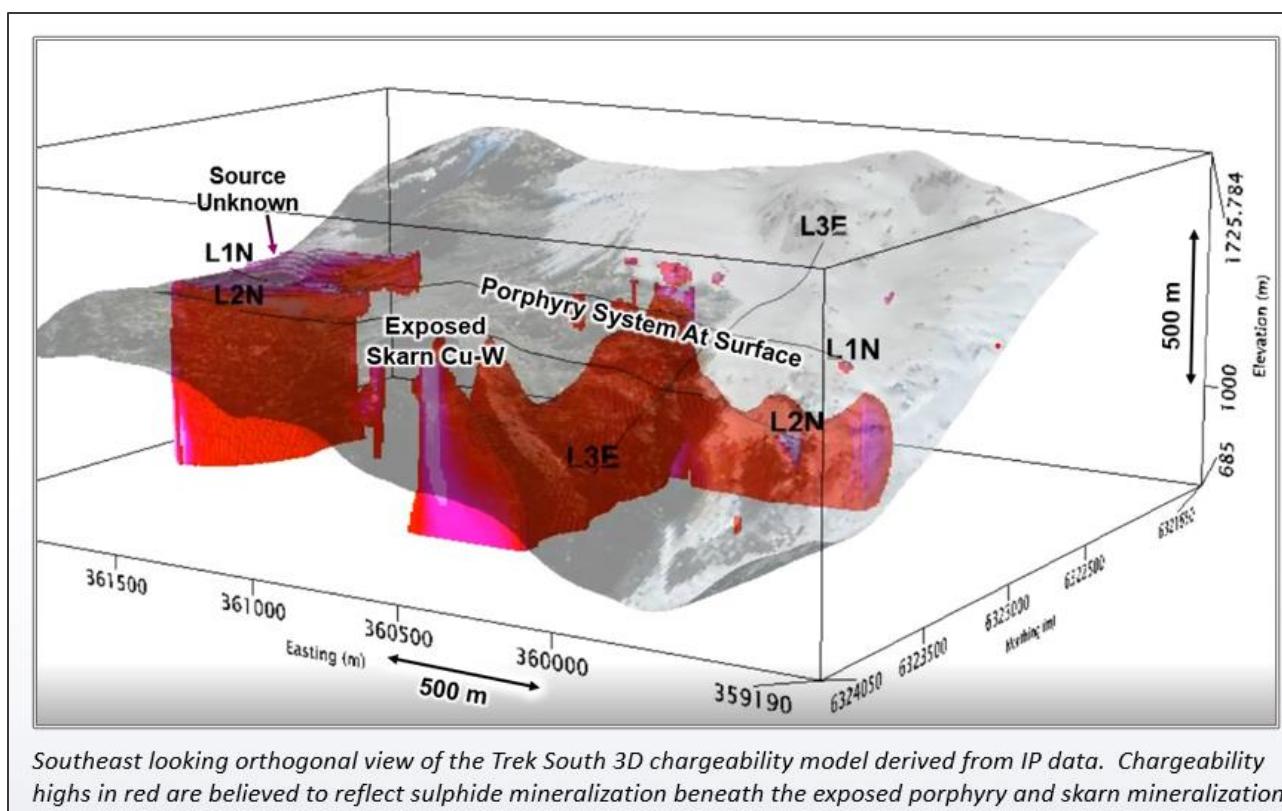



Figure 29: Compilation map of IP survey anomalies overlain on RTP aeromagnetic map

10 DRILLING

Between 2008 and 2011, 38 diamond drill holes totalling 15,732.45 metres have been drilled by Romios on the Trek Property. Drill hole locations at Trek North can be seen on Figure 31, the two

drill holes at the Tangle Zone are shown on Fig. 28. Table 4 shows the drill hole data and Table 5 lists significant drill intersections. In most instances, the drill holes are testing porphyry-style or breccia-hosted mineralization with no known preferred orientation, consequently the ratio of the True Width to the Drilled Width is uncertain. In the case of the holes testing the Lower Breccia at the Trek North Zone, that zone appears to be sub-horizontal and the holes that intersected mineralization here (TRK11-24, -32, -34) did so at angles of about 60 to 70 degrees, therefore the True Width can be considered to be approximately 85% to 95% of the Drilled Width in these holes. See section 11.2 for drill core sampling methods and discussion of accuracy.

Figure 30: Image of the IP chargeability high underlying the Trek South area, taken from a 3D model video created by Simcoe Geoscience

In 2008, a diamond drilling program was initiated with six helicopter supported diamond drill holes totaling 1,408.6 m on the (Trek) North Zone (Bernales et. al., 2008). These first-ever drill holes at Trek North intersected strong porphyry-style and breccia-hosted mineralization, assaying up to 1.49% Cu, 0.77 g/t Au and 16.76 g/t Ag over 46.6 m (hole TRK08-01).

Table 4: Diamond Drill Hole Locations

Drill Hole #	Collar Easting	Collar Northing	Collar Elev (m)	Length (m)	Azimuth at Collar	Dip at Collar
TRK08-01	360794	6326527	1277	196.60	250	-70
TRK08-02	360795	6326528	1277	321.26	0	-88.2
TRK08-03	360796	6326529	1277	209.49	70	-70
TRK08-04	360857	6326422	1248	173.74	245	-80
TRK08-05	360857	6326422	1248	311.51	65	-70
TRK08-06	360738	6326629	1342	195.99	0	-90
TRK09-01	360909	6326526	1281	321.00	340	-75
TRK09-02	361231	6326789	1506	150.00	160	-80
TRK09-03	361168	6326623	1423	174.00	285	-67
TRK09-04	361230	6326789	1506	141.00	250	-70
TRK09-05	361005	6326545	1309	399.00	350	-80
TRK09-06	360878	6326481	1273	309.00	320	-65
TRK09-07	360779	6326501	1256	201.00	257	-52
TRK09-08	360648	6326374	1091	240.00	360	-45
TRK09-09	360998	6326654	1408	435.00	360	-80
TRK10-01	360897	6326683	1409	405.00	2	-70
TRK10-02	361040	6327056	1658	387.40	12	-80
TRK10-03	361038	6326868	1559	591.00	170	-80
TRK10-04	360791	6326752	1438	471.00	350	-70
TRK10-05	361230	6326790	1506	540.00	330	-70
TRK10-06	361302	6326978	1603	651.00	243.1	-82
TRK10-07	361168	6326623	1423	555.00	281.6	-83
TRK10-08	361068	6326484	1290	447.00	20	-45
TRK11-24	361050	6326720	1463	1028.00	80	-78
TRK11-25	360763	6326577	1321	52.10	70	-90
TRK11-26	361169	6326623	1445	37.16	90	-86
TRK11-27	360763	6326577	1321	481.00	70	-87.5
TRK11-28	361169	6326623	1423	724.51	90	-80
TRK11-29	361464	6326608	1522	137.00	270	-80
TRK11-29B	361464	6326608	1522	20.00	270	-70
TRK11-30	361464	6326609	1522	383.20	270	-90
TRK11-31	361006	6326654	1408	732.60	85	-70
TRK11-32	361169	6326623	1445	904.70	0	-75
TRK11-33	361005	6326655	1408	702.00	355	-70
TRK11-34	361169	6326623	1445	817.47	340	-79
TRK11-35	360974	6326804	1498	830.00	60	-83
TZ11-01	358625	6323900	1060	597.41	200	-90
TZ11-02	358625	6323900	1060	459.33	20	-63

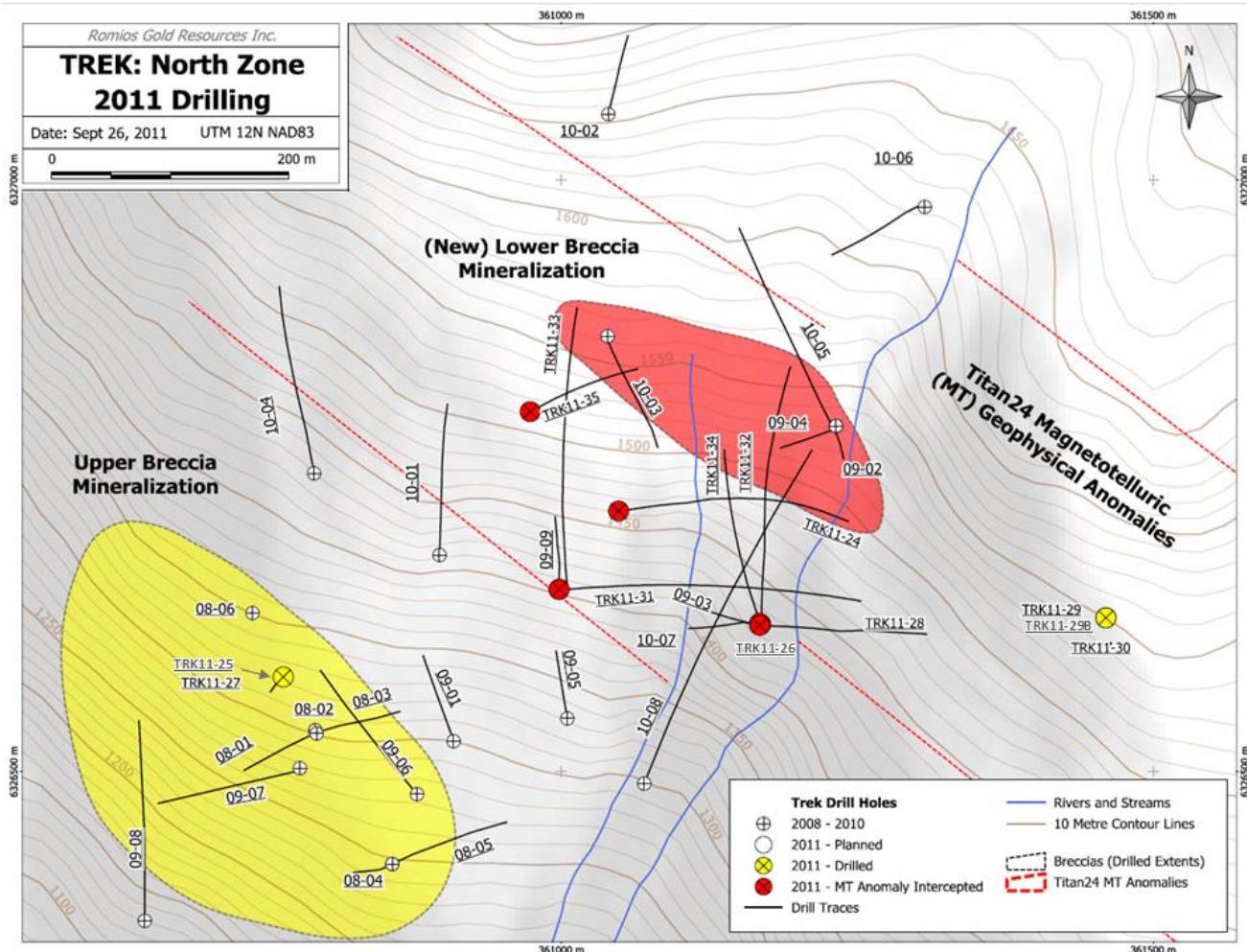


Figure 31: Trek North Diamond Drill Hole Location Map

In the initial 2008 drill program at Trek North, mineralization was found flanking a NNW-trending monzonite dyke and, more importantly, within a swarm of 3-15 m wide breccia pipes which are exposed in the cliff face at the North Zone. Similar mineralization associated with NE-trending monzonite to monzo-diorite dykes was also found 500 m northeast of the North Zone exposures at the Northeast Zone and a further ~200 m northeast at the Upper Northeast Zone.

In 2009, nine NQ and HQ size, helicopter-assisted diamond drill holes were drilled on the North, Northeast and Upper Northeast Zones for a total of 2,730 m and this program extended the known mineralization over 400 m to the east (Chadwick and Guszowaty, 2009). Porphyry and breccia-hosted mineralization were intersected in most of the holes, often over substantial widths up to 100 m but with variable grades, and copper-gold mineralization was also found as fracture fillings and disseminations in basaltic to andesitic volcanics. One of the best intercepts, in DDH TRK09-09, returned grades of 0.56% Cu and 0.39 g/t Au over 29.5 m, including a high-grade intersection of 4.5 m of 2.16% Cu and 1.66 g/t Au. Hole TRK09-06 intersected a broad zone

of relatively consistent mineralization – i.e., 252 m grading 0.11% Cu, 0.38 g/t Au and 1.48 g/t Ag – whereas DDH TRK09-07 intersected a well mineralized breccia that assayed 1.16% Cu, 0.12 g/t Au and 10.43 g/t Ag over 19.9 m. Drilling revealed the presence of intense, hematite-dusted, potassic alteration and an increase in the number of intrusions towards the northeast. Ground conditions encountered were poor down to depths of 150-200 m due to fracturing and clay-rich fault zones.

Drilling in 2010 returned intersections of up to 152.0 metres @ 0.25% Cu and 0.15 g/t Au, including 5.2 metres of 1.75% Cu, 0.60 g/t Au (DDH TRK10-07) and 93 m @ 0.40% Cu and 0.16 g/t Au (DDH TRK10-03). Several other high-grade intercepts of the chalcopyrite-rich zone first encountered in DDH TRK09-09, at a contact between basalts and overlying andesites, were also recorded in 2010 and the increasing thickness of this zone to the east suggest that the ore-forming fluids came from the east. The local volcanic rocks are intruded by a swarm of monzonitic to dioritic dykes 0.2 to 2.0 m in width and the degree of mineralization and alteration were seen to correspond to the intensity of the dyke swarm. Alteration styles included an early calcic-potassic phase comprised of actinolite, diopside, biotite, albite and chlorite with white mica, clay and carbonate locally replacing feldspars; this phase was seen to be related to low-grade, disseminated mineralization. A calcic-sodic alteration stage was found to cut the calcic-potassic stage, is evidenced by bleaching, and is magnetite-destructive; it was interpreted as being coeval with the main-stage vein and fracture controlled mineralization. Late-stage, white to pink K-feldspar and albite veins up to 30 cm cut all other alteration types and contain local chalcopyrite.

In 2011, 13 holes were drilled at Trek North for a total of 6,849.7 metres and two holes were drilled at the Tangle Zone for a total of 1,056.7 metres (Close and Danz, 2012). The Trek North holes targeted the Lower Breccia in four cases, intersecting the zone in 3 holes drilled from two pads ~150 m apart. The results indicate that this magmatic-hydrothermal breccia occurs along the upper contact of a shallow-dipping, 50 to 95 m thick, orthoclase porphyry sill-like body with the adjacent andesites, and this sill overlies a roughly parallel footwall fault. High-grade Cu-Ag results were returned from two holes at depths between 700-750 metres: TRK11-32 intersected 22.56 m @ 1.24% Cu, 22.13 g/t Ag and 0.05 g/t Au and hole TRK11-24 intersected 27.13 m @ 0.66% Cu, 8.87 g/t Ag and 0.01 g/t Au. Hole TRK11-34 intersected a broader, lower grade zone of 47.46 m @ 0.17% Cu, 2.74 g/t Ag and 0.02 g/t Au. Results to date from this limited drilling indicate that the Lower Breccia likely pinches out to the northwest but is open to the northeast and perhaps partially to the south as well. The downdip extension of the Lower Breccia and possible roots of this zone remain an attractive target. A broad zone of moderate grade was also intersected in 2011 in the Upper Breccia by hole TRK11-27: 113.6 metres of 0.25% Cu, 0.30 g/t Au and 3.0 g/t Ag.

The two holes drilled at the Tangle Zone intersected strong zones of potassic and calc-potassic alteration and primarily pyrite plus minor chalcopyrite mineralization, separated by the 0.75 to 4.75 m wide Tangle Zone fault (Close and Danz, 2012). The host conglomerate, tuffs and breccias are cut by orthoclase and pseudoleucite bearing dykes and mineralization is typically found in

orthomagmatic breccias near the dyke margins. Although assay results were generally poor in these two drill holes, the combination of the favourable alkalic intrusions, extensive Cu-Ag-Au soil geochemical anomalies and the TITAN 24 chargeability anomaly warrant continued exploration here.

Table 5: Significant Diamond Drill Hole Intercepts

Drill Hole	Location/Zone	From (m)	To (m)	Length (m)	Cu%	Au g/t	Ag g/t
TRK-08-01	North Zone	135.94	182.58	46.6	1.49	0.77	16.76
TRK-08-02	North Zone	121.86	246.58	124.7	0.19	0.82	2.63
<i>Including</i>	North Zone	121.86	148.86	27.0	0.31	3.27	5.71
TRK-08-03	North Zone	92.26	209.5	117.2	0.14	0.28	1.63
<i>Including</i>	North Zone	177.4	209.5	32.1	0.31	0.34	3.06
TRK-08-05	North Zone	157.58	178.28	20.70	0.12	0.05	2.54
TRK-08-06	North Zone	3.05	35.65	32.6	0.10	0.10	0.51
<i>and</i>	North Zone	164.29	188.06	23.77	0.1	0.31	1.78
TRK09-01	North Zone	192	258	66	0.22	0.22	1.91
<i>Including</i>	North Zone	192.0	212.0	20.0	0.36	0.43	3.14
TRK09-02	Upper Northeast	6.0	150.0	140.0	0.10	0.16	Tr
<i>Including</i>	Upper Northeast	6.0	43.0	37.0	0.13	0.21	0.21
TRK09-03	Northeast Zone	68.0	90.0	22.0	0.24	0.08	6.25
<i>and</i>	Northeast Zone	115.0	125.0	15.0	0.30	0.20	2.98
TRK09-04	Upper Northeast	22.88	79.00	56.1	0.07	0.11	0.13
TRK09-05	North Zone	16.0	399.0	383.0	0.09	0.15	1.03
TRK09-06	North Zone	44.0	252.0	208	0.11	0.38	1.47
<i>Including</i>	North Zone	71.0	76.5	5.5	0.14	8.49	4.1
TRK09-07	North Zone Porphyry	134.8	191.9	57.15	0.49	0.11	4.03
<i>Including</i>	North Zone Breccia	168.6	188.5	19.9	1.16	0.12	10.43
TRK09-09	North Zone	125.5	155	29.5	0.56	0.39	3.82
<i>Including</i>	North Zone	127.5	132	4.5	2.16	1.66	12.03
TRK10-01	North Zone	208	286	78.0	0.20	0.26	2.18
TRK10-02	North Zone	79	105	26.0	0.13	0.06	0.46
TRK10-03	North Zone	324	417	93.0	0.40	0.16	1.24
<i>Including</i>	North Zone	365.9	370.5	4.6	3.84	1.82	8.52
TRK10-05	North Zone	12	74	62.0	0.354	0.4	0.7
<i>Including</i>	North Zone	18	28	10.0	0.76	0.99	1.3
TRK10-07	North Zone	184.0	336.0	152.0	0.25	0.15	1.94
<i>Including</i>	North Zone	265.5	270.7	5.2	1.75	0.6	14.3

TRK10-08	North Zone	234.25	285.0	50.75	0.33	0.18	2.68
<i>Including</i>	North Zone	238.0	246.0	8.0	1.52	0.75	5.98
TRK11-24	North Zone	326.5	399.8	73.3	0.17	0.1	2.06
<i>and</i>	North Zone Lower Brx	725.17	752.3	27.13	0.66	0.01	8.87
TRK11-27	North Zone Upper Brx	92.9	206.54	113.64	0.25	0.3	3.01
<i>and</i>	North Zone	379.66	408.0	28.34	0.214	0.1	1.53
TRK11-31	North Zone dykes	46.9	112.9	66.0	0.15	0.04	0.55
<i>and</i>		227.93	270.65	42.7	0.202	0.07	2.15
TRK11-32	North Zone	359.45	381.65	22.2	0.307	0.148	4.22
<i>and</i>	North Zone Lower Brx	727.16	749.72	22.56	1.238	0.05	22.13
TRK11-33	North Zone	53.02	109.48	56.46	0.136	0.0735	1.74
<i>and</i>	North Zone	458.67	484.63	25.96	0.145	0.173	1.33
TRK11-34	North Zone	127.6	133.7	6.1	1.334	0.072	9.32
<i>and</i>	North Zone	206.71	451.69	244.98	0.105	0.066	1.35
<i>and</i>	North Zone	548.9	565.3	16.4	0.196	0.275	3.67
<i>and</i>	North Zone Lower Brx	680.91	728.37	47.46	0.174	0.023	2.74
<i>and</i>	North Zone Lower Brx	799.45	809.93	10.48	0.216	0.199	2.95

11 SAMPLE PREPARATION, ANALYSES AND SECURITY

Throughout the course of Romios' work on the Trek property from 2006 to 2025, all samples collected for analysis were part of a quality control program ensuring best practices in the handling, storage, shipping and analysis of the samples. This methodology has applied to all drill core and rock samples.

11.1 Rock Samples

11.1.1 Methodology and Approach

In terms of the rock samples collected in the 2018-2025 period, samples were either chip samples across mineralized zones or other intervals of geological interest, or grab samples, typically fist-sized and representative of the area or rock being sampled whenever possible. Chip samples were collected with a chisel and small sledge hammer in as continuous a row as possible. On rare occasions samples of the most mineralized sections might have been preferentially sampled in order to test for the presence of certain metals and/or their relation to other minerals present.

Samples were placed in heavy-duty plastic sample bags along with their corresponding assay tag and tied tightly with flagging tape or a zip tie. Co-ordinates of the sample site were determined with hand-held Garmin GPS units.

Assessment reports covering exploration from 2006 to 2011 do not specifically describe the rock sampling procedures but based on the sample descriptions in the appendices of the annual reports (e.g. Simmons, 2006; Close and Danz, 2012) they are believed to be essentially the same as the those described above, i.e., a mix of chip and grab samples.

11.2 Core Sampling 2006-2011

The following description of drill core handling, sampling and analytical procedures is taken from Bernales, et. al. (2008), Chadwick and Guszowaty (2009), Chadwick (2011), Desautels (2011), and Close and Danz (2012), with comments by the authors of this report based on observations of the core stored in the field.

Romios followed an industry-standard, rigorous and detailed set of protocols for all samples collected during the Trek drill programs. Drill core was transported directly from the drill site using a helicopter, where it was temporarily laid out on the ground and examined by the field geologist. The boxes were labelled and then cross-stacked waiting logging or moved immediately to the core logging facility, at the McLymont Creek camp in 2008 and, in the following years, to a building at the Novagold/GCMC Espaw camp (now *lsbā*). Once all samples were measured and marked out by a geologist, half of the core was collected using an electric rock saw and the other half was left in place in the core box for future reference. Samples were sealed in bags, tabulated, and prepared for shipment. The chain of custody for the samples was monitored along the route from field site to analytical laboratory. Details of this process are as follows:

1. Prior to splitting, drill core was fitted together and rotated to represent symmetrical or representative halves in order to maintain sampling consistency. Drill core in each box was reassembled and measured to ensure the accuracy of the run marker placements and note any significant core loss. All drill core was photographed before splitting. A metal tag recording drill hole number, box number, and drill core intervals was stapled to the end of each box. Geotechnical data, consisting of core recovery only, was recorded in an Excel spreadsheet. In general, core recovery from the North Zone was relatively high, approaching 90% to 95% in the holes inspected by AGP (Desautels, 2011) and the few holes observed by the authors in recent years. Geological logging followed, and involved the description of lithology, textures, structure, alteration, and mineralization.
2. Identification and determination of individual sample intervals was based on visual characteristics of the rock, including geological boundaries, contacts and changes in types or intensity of alteration or mineralization. Sample intervals varied from a minimum of 30 cm to a maximum of 3 m and, excluding a few exceptions, averaged 2 m. Samples consist of one half split of HQ or NQ size core, except duplicate pairs, each of which

comprised a quarter split in 2008, and lab duplicates from halved pulp samples in 2009 and 2010. The 2011 report does not state what type of duplicates were used, presumably either $\frac{1}{4}$ cut core or lab duplicates from the pulps or coarse rejects. Typically, continuous sampling was completed in the holes from top to bottom.

3. From 2008-2011, Romios used ALS Chemex's tagging system. Tag numbers 3 and/or 4 were inserted in the sampling bag. Part 2 was stapled to the box under an aluminum tag, with the from-to sample interval engraved on the tag. The first part was retained within the sample book for the record. This methodology ensured a clear record of each sample location within the core box. Recent examination of some of the core stored on site reveals that very few of the sample tags or metals tags in the core boxes are legible and many have decayed completely. More durable methods for marking the beginning and end of sample intervals should be investigated for future drill programs.

Romios exclusively used a core cutting saw for all samples. For each sample, one half of the core and a sample tag were placed in individually numbered polyurethane bags and closed with a non-reusable plastic tie. The remaining half core was returned to the core box in the correct orientation and refitted to ensure that all pieces were present and located at the appropriate metre markers for permanent storage.

Company geologists supervised the collection of all samples and individual samples typically weighed from 0.5 kg to 2 kg. Individual samples were catalogued and placed in groups of five to twenty samples into sealed woven plastic bags for shipment. Information on each sample shipment, including total number of bags, individual sample numbers within each shipping bag, and requested analytical methods were documented on a shipping form.

All samples collected were flown by helicopter from the project site to Bob Quinn Lake airstrip on Highway 37. Each shipment was received by Romios ground crew and then shipped by independent transport companies (typically by freight truck) to ALS Chemex Laboratories in Terrace or North Vancouver, BC.

11.3 Core Storage 2008-2011

The 2008 drilling was based out of Romios' camp on McLymont Creek, 35 km to the southeast of Trek. Logging, sampling and core storage were all done at this camp, which is now on Enduro Metals' Newmont Lake property, acquired by Crystal Lake / Enduro from Romios in 2018. In 2022, the core racks and boxes at this site were observed to be in very poor condition. Accordingly, a Romios crew salvaged key portions of several holes and moved them to the main Trek core yard located south of Sphaler Creek and approximately 1.5 km east of the Trek South prospect. A further inspection in August 2025 of what remains of the McLymont Creek camp, now undergoing reclamation, led to the recovery of additional Trek North drill core.

The 2009 and 2010, Romios core storage area was reportedly located at 360995 E, 6325830 N, 1055 m elevation (UTM NAD 83 Zone 9), a point ~275 m east of the Lower North zone and roughly midway between Sphaler Creek and Trek North. This site is a few kilometres away from the Galore Creek Espaw camp (now Isbā), and the core had to be flown in. Core storage consisted of cross-stacked core box piles. The area was not surrounded by a locked fence compound but access is very difficult and hence was considered relatively secure from visitors. However, in 2025 Romios personnel attempted to locate this core storage area by helicopter and no sign of it was visible from the air at or anywhere near the reported coordinates.

As of 2011, new core was stored at treeline on the south side of Sphaler Creek, east of the Trek South prospect area, on the east-central edge of claim 509243, at UTMs 362120 E, 6323043 N, 1298 m elevation. The amount of core stored at this site is immense and appears greater than the product of one season's drilling. At present there is no map or other listing of the core stored at this site but it appears probable that core from the 2008-2010 campaigns was moved here at some point. A complete inventory and listing of the core at this site should be made at the first opportunity.

11.4 Soil Sampling

Romios' (or their contractors) crews conducted soil sampling in 2006 and 2010. In 2006, 438 soil samples were collected below tree line at the Tangle Zone in well-developed soil, primarily B-horizon. In 2010, 110 samples were collected from heavily vegetated ground east of the Lower North Zone and a 20 sample infill line was completed on the Tangle Zone grid. Neither of the reports covering these soil programs describe the sampling procedures or provide documentation of the sample sites. Although the QAQC and other aspects of the programs were generally satisfactory, in future programs the procedures and site details for each sample should be recorded and provided in the project reports to ensure consistency from year to year.

11.5 Security

Rock samples collected for analysis in the 2018-2025 period by Romios crews were stored in polyweave polypropylene "rice bags" either secured in the crews' quarters or in a locked vehicle until personally delivered by the co-author or his senior assistant to the ALS Lab in Terrace.

Drill core samples collected during the 2008 program were kept in the isolated McLymont Creek camp, packed in the large polyweave bags, and hand-delivered to the ALS lab in Terrace. Drill core from the 2009-2011 programs was slung from the drill to the Espaw Camp where it was kept in a building designated only for Romios' use and separate from those used by the Novagold personnel. The drill core samples were hand-delivered to the ALS Lab in Terrace, BC or flown by helicopter to the Bob Quinn airstrip, received by Romios personnel there, and shipped via freight truck to the ALS Lab in Terrace. Although it is not clearly stated in the reports, it is believed that the sacks of samples were tied shut with tamper-proof ties and there was no sign of any tampering with these when received by the lab. The security measures in place for the core

transport were reviewed by Piere Desautels during a site visit in 2010 (Desautels, 2011), and found to be satisfactory.

11.6 Analytical Procedures

ROCK AND DRILL CORE SAMPLES: All gold assays, copper analyses, multi-element analysis packages, whole rock analyses and specialty analyses such as the tungsten assays were performed on behalf of Romios by ALS Labs which has been certified by the Standards Council of Canada since 2005, achieved ISO 9001 certification that same year and is now ISO/IEC 17025 certified. Romios and ALS Labs are independent of each other.

In 2006, samples were trucked directly to the ALS lab in North Vancouver, BC and received with the security straps in place. Thereafter, samples were delivered to the ALS prep lab facility in Terrace, BC for fine crushing (70% <2 mm) followed by pulverizing a 250 gram split (85% <75 microns). Analyses were then performed at the main ALS laboratory in North Vancouver, BC.

Samples submitted in 2008-2011 were analysed using ALS Lab's 35 element package ME-ICP41 which utilizes an aqua regia digestion of a 0.5 gram sub-sample followed by ICP-MS instrument analysis. Coarse and malleable minerals such as native gold and silver are not representatively characterized by such a small sample size, and for that reason gold must be analyzed separately via a 30 gram charge. Gold was determined by the fire assay package Au-AA24 which utilises a 50 gram portion of the pulverised sample.

From 2018 to 2025, the ALS multi-element analytical method used most commonly was an expanded, 41 element package (ME-MS41 or ME-ICP41), still with an aqua regia digestion followed by analyses on ICP-AES or ICP-MS instruments. Gold was analyzed using the fire assay method with an AA-Finish using ALS packages Au-AA23 or Au-AA24 (30 g and 50 g sample weights respectively). All of these methods are commonly used in the exploration and mining industry and are considered appropriate for the base and precious metals sought in the Trek drill programs and later exploration programs. Samples that returned assay values above the upper detection limit of any procedure were then re-assayed by methods suitable for ore-grade material such as OG46 for high grade copper, lead or zinc samples (aqua regia digestion and ICP finish), and Au-GRA22 for high-grade gold samples. In 2011, 57 non-drill core samples were analysed by the four acid, ore grade element ICP-AES and 38 element fusion ICP-MS methods. In 2019 and 2022, many of the rock samples were analysed by the 48-element package, four acid digestion ME-MS61 method while others were analysed by ME-MS41. The four acid digestions, such as that used in ME-MS61, provide a more complete digestion than aqua regia methods and are suitable when the mineralogy of the sample is suspected of being resistive to aqua regia. Careful consideration and evaluation of the sample results must be taken, however, as four-acid digestions can cause erratic volatilization of some potentially important elements such as As, Sb, Cr, U and Au, hence it is particularly important to combine a gold assay procedure with a 4-acid procedure and this was done in all cases.

SOIL SAMPLES: The 2006 and 2010 soil samples were trucked to the ALS lab in North Vancouver and analysed for a multi-element suite of elements by the ALS method ME-ICP41 and for gold by Au-AA23. Soil samples from the areas north of Sphaler Creek were sent for 61 element, four acid, near-total digestion (ME-MS61) and 30 gram fire assay gold (AuAA-23) analysis. Soil samples taken from the soil line infilling between gridlines from the 2006 Tangle Zone soil grid were sent for 41 element ICP-MS and fire assay gold, as done in 2006, to allow comparison between 2006 and 2010 assay results. The methods used are considered appropriate for the soil being analysed and the elements being sought.

11.7 Quality Control Procedures and Results

In order to ensure that primarily the copper and gold analyses were accurate throughout the exploration programs at Trek, a number of standard QAQC steps were followed by the geologists managing each program, including the insertion of either a blank sample or a commercial, "Certified Reference Material" (CRM) standard, typically in place of approximately every tenth sample in the sample stream. This QAQC program is in addition to internal procedures followed by ALS Labs involving the insertion and analyses of various CRMs, blanks and duplicates.

11.7.1 Blanks

The first step in the QAQC of laboratory results is to ensure that there is no contamination of the samples in transit between the field and the laboratory or during the crushing and pulverizing stages or any of the subsequent stages of the analyses at the lab. To do this, a variety of "blank", barren material was used over the years, ranging from silica sand in 2006, to commercial granitic blanks from CDN Resource Laboratories Ltd., as well as locally purchased limestone and "lava rock" in 2010 and 2011, to a locally sourced barren Eocene granite in recent years. With very rare exceptions, the copper analyses and gold assays of these blanks returned very low values and confirm that there was no significant contamination of the samples.

The QAQC procedures in place during the 2019-2025 field programs are presented in the corresponding assessment reports in suitable detail, including charts and tables of results with the 95% confidence levels and discussions of any anomalous results. Very few anomalies were noted in these results and none was of any appreciable significance to the overall results. In 2021, one blank returned a value of 134.5 ppm Cu following a highly mineralized sample in the sequence but this was the last sample and had no effect on the rest of the results.

11.7.2 Standards

To ensure the accuracy of the copper +/- other metal analyses and the gold assays, Certified Reference Material (CRM) Standards were inserted in the sample streams each year, typically at every 20th position and alternating with the blank samples. CRMs are commercially prepared, pulverised rocks from various ore deposits that have been carefully homogenised and rigorously analysed in order to provide a "Certified Value" (CV), Standard Deviation (Std Dev) of the various metal levels present, the upper and lower acceptable confidence levels, etc. In the 2018-2025 exploration programs, a range of Standards sourced from OREAS were used, the most

appropriate one selected in the field based on the expected levels of copper and/or gold in the adjacent sample series. The lab results produced the occasional anomalous result above or below the acceptable range, which is the CV +/- either 2 X Std Dev or 3 X Std Dev according to different experts. The authors typically use the +/- 2 X Std Dev but values within the 3 X Std Dev range are also acceptable to industry experts (*pers comm.* Chantal Jolette, OREAS). These occasional anomalous results rarely had any bearing on the overall results and only triggered a re-assay in one 2022 case. In 2021, one standard returned a gold value below the accepted lower threshold and would have triggered a re-assay if those particular samples were material. All copper values were well within the acceptable range.

For the 2008-2010 Trek drill programs, Romios primarily used the following four standards from CDN Resources Laboratory Ltd. to monitor the analytical precision of the laboratory.

- The CGS-17 reference material is a high grade copper and provisional gold standard assaying 2.36% Cu and 2.43 g/t Au.
- The CGS-24 reference material is a medium grade copper and gold standard assaying 0.486% Cu and 0.487 g/t Au.
- The HC-2 reference material is a multi-element standard assaying 1.67 g/t Au, 15.3 g/t Ag, 4.63 % Cu, 0.476 % Pb, and 0.259 % Zn.
- The HZ-2 reference material is also a multi-element standard assaying 0.124 g/t Au, 61.1 g/t Ag, 1.36 % Cu, 1.62 % Pb, and 7.20 % Zn.

A listing of the standards' certified values and the 2 standard deviation limit is shown in Table 6 and summaries of the copper and gold results and failure rates are presented in Tables 7 and 8 respectively.

Standards were provided in kraft envelopes with a label marking indicating the standard name. Apparently, these standards were submitted to the lab without re-packaging or obscuring the name; it should be a requirement of any future program that the identifying marks on any standard are removed before shipment to the lab so as to have a blind submission. The names on the standard packages from OREAS are easily removed with a felt marker and have been removed in all programs since 2018.

The CGS-24 copper standard displayed a high rate of failure (Table 7) with a series of multiple failures in hole TRK-10-4 and TRK-10-05 with three samples exceeding three times (3x) the standard deviation. In such a situation the company should in future have the lab re-analyse the samples before and after each failed standard up to the next passed standard in the series, and consider re-submitting a portion of the coarse reject to the laboratory as well. The copper HZ-2 standard also showed multiple failures in hole TRK-09-06 but none of the failures exceeded 3 times the standard deviation.

For gold, the failure rate ranged between 11% and 15% in the 2008-2010 drill programs. With the exception of the CGS-24 standard, none of the samples submitted had multiple failures adjacent to each other.

Table 6: Certified standard reference material used by Romios from 2008-2010

Standard	Type	Au g/t	Cu %	Ag g/t
CDN-GS-3C	Gold	3.58±0.31	-	-
CDN-CGS-17	Gold and copper	2.43±0.34	2.36±0.11	-
CDN-CGS-24	Gold and copper	0.487±0.050	0.486±0.034	-
CU-130	?	-	-	-
H-22	?	-	-	-
CDN-HC-2	Multi Element	1.67±0.12	4.63±0.26	15.3±1.4
CDN-HZ-2	Multi Element	0.124±0.024	1.36±0.06	61.1±4.1
CDN-BL-3	Blank granitic material	<0.01	-	-
CDN-BL-4	Blank granitic material	<0.01	-	-

Table 7: Summary of copper standards analytical results, 2008-2010

	Mean	Romios Mean	Miss-Labelled	Insufficient Sample	Count	Fail +2STD	%Fail
CGS-17	2.36	2.37	2	9	73	4	5.48%
CGS-24	0.486	0.510	2	0	73	22	30.1%
HC-2	4.63	4.57	0	1	26	0	0.0%
HZ-2	1.36	1.38	1	2	40	8	20.0%

Table 8: Summary of gold standards assay results 2008-2010

	Mean	Romios Mean	Miss Labelled	Insufficient Sample	Count	Fail +2STD	%Fail
CGS-17	2.43	2.44	2	9	74	11	14.9
CGS-24	0.487	0.492	2	5	69	9	13.0
HC-2	1.67	1.66	0	1	26	3	11.5
HZ-2	0.124	0.128	0	0	41	5	12.2

In future, a review of independently evaluated standards in order to select a variety of standards that produce the most consistent results is recommended. In the case of a series of high-grade samples followed by low-grade samples, it may be worthwhile to ask the lab to run a barren wash through the crusher between these two samples.

The 2011 drill program generated 6,120 samples sent for assay, including 5,325 core samples and 262 blanks, 259 standards and 270 duplicates. The 2011 program utilised three Standards Cu 152 (n=68), Cu 163 (n=75) and Cu 170 (n=116) produced by WCM Minerals of Burnaby BC.

The Certified Values (CV) and the statistically accepted ranges (2 x and 3 x Standard Deviations (StDev)) for these CRMs are shown in Table 9.

Table 9: Certified Values for CRMs used in the 2011 drill program

CRM STANDARD	Copper % C.V.	Cu C.V. - 2StDev	Cu C.V.+2 StDev	Cu C.V. - 3StDev	Cu C.V.+3 StDev	Au g/t C.V.	Au C.V. -2 St Dev	Au C.V. +2 St Dev	Au C.V. -3 St Dev	Au C.V. +3 St Dev
Cu 152	1.16	1.105	1.217	1.077	1.245	1.616	1.480	1.752	1.412	1.956
Cu 163	1.061	1.027	1.095	1.010	1.112	4.354	4.094	4.614	3.964	4.744
Cu 170	0.3493	0.338	0.361	0.332	0.367	0.160	0.147	0.174	0.140	0.181
CRM STANDARD	Ag g/t C.V.	Ag C.V. -2 St Dev	Ag C.V. +2 St Dev	Ag C.V. -3 St Dev	Ag C.V. +3 St Dev		Standard Deviations	Cu St Dev	Au St Dev	Ag St Dev
Cu 152	27.23	25.986	28.474	25.364	29.096		CRM Cu 152	0.028	0.068	0.622
Cu 163	98.988	94.255	103.721	91.889	106.087		CRM Cu 163	0.017	0.1299	2.3664
Cu 170	9.7067	8.348	11.065	7.669	11.744		CRM Cu 170	0.00589	0.00679	0.67922

The results of 259 standards were analysed by the authors of this report and the following tables summarise the results of the analytical results. The range and means of the copper, gold and silver analyses of the three CRM standards used in 2011 are shown in Table 10. A statistical summary of results of the Cu, Au and Ag analyses of these standards is provided in Table 11.

Table 10: Range and mean results of the three CRM standards used in 2011 drill program

STANDARD	Romios Mean Cu	Low Cu %	High Cu %	Romios Mean Au	Low Au ppm	High Au ppm	Romios Mean Ag	Low Ag ppm	High Ag ppm
Cu 152	1.18%	1.09%	1.32%	1.63 ppm	1.34	1.87	28.6 ppm	25.5	30.6
Cu 163	1.07%	0.975%	1.17%	4.37 ppm	3.64	4.87	NA	91.8	>100
Cu 170	0.35%	0.329	0.392	0.17 ppm	0.13	0.225	10.0 ppm	9.0	11.5

CRM Standard 152: The 66 copper and 68 gold results from this standard are generally acceptable with a small number of results, 5 to 7, above the 2 X St Dev upper threshold and only three copper and no gold values above the 3 X St Dev threshold (Table 11). Two of these three samples did not follow any highly mineralized samples in the sample series. The 68 silver results from this standard, however, are particularly poor. The Certified Value (CV) of this standard is 27.23 g/t Ag, a level substantially higher than the typical 4-6 g/t Ag grade of alkalic porphyries. Due to this CV being well outside the expected range of silver values and the high percentage of results above the acceptable threshold, this standard is of limited use in verifying the silver analyses from the 2011 program. It is however, generally acceptable as a copper and gold standard and helped confirm the overall accuracy of those lab results.

Table 11: Statistical summary of results of the Cu, Au and Ag analyses of the three CRM standards used in 2011

COPPER RESULTS						
CRM STANDARD	Number of Samples	Within 2 St Dev of CV	Below CV - 2 StDev	Above CV +2 StDev	Below CV - 3 StDev	Above CV +3 StDev
Cu 152	66 + 2 NSS	60	1	5	0	3
Cu 163	75	70	3	2	1	2
Cu 170	117	92	8	16	5	2
GOLD RESULTS						
CRM STANDARD	Number of Samples	Within 2 St Dev of CV	Below CV - 2 StDev	Above CV +2 StDev	Below CV - 3 StDev	Above CV +3 StDev
Cu 152	67 + 1 NSS	58	2	7	1	0
Cu 163	73 + 2 NSS	55	7	11	3	5
Cu 170	113 + 3 NSS	92	2	19	1	3
SILVER RESULTS						
CRM STANDARD	Number of Samples	Within 2 StDev of CV	Below CV - 2 StDev	Above CV +2 StDev	Below CV - 3 StDev	Above CV +3 StDev
Cu 152	68	23	0	45	0	21
Cu 163	75	N/A*	2	N/A*	1	N/A*
Cu 170	116	116	0	1	0	0

*Only 22 samples with >100 ppm Ag were re-assayed. These returned values between 100 and 108 g/t Ag, all except 2 below 106 g/t Ag (CV+3xStDev)

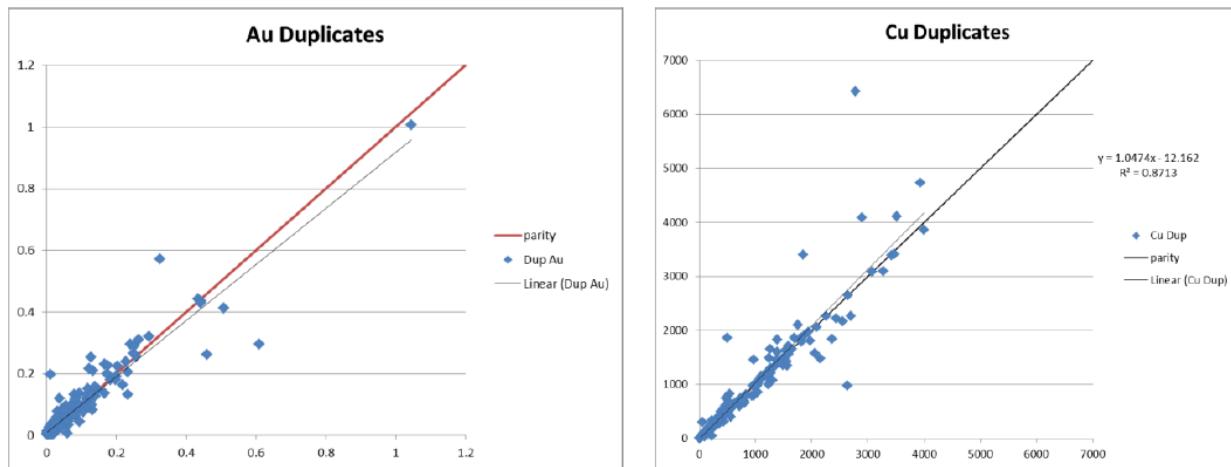
CRM Standard 163: Overall, the 75 copper results for this standard are considered quite good with only 2-3 outside the upper and lower 2 x St Dev thresholds and 1-2 outside the 3 x St Dev threshold (Table 11). The 73 gold results were not as well constrained. The CV of this standard is 4.354 g/t Au which is considerably higher than the average gold content of alkalic porphyries (i.e., <1 g/t Au). The CV for silver in this standard is 98.988 g/t Ag which is well beyond the average silver values of alkalic porphyries and is also essentially at the upper limit (100 ppm Ag) of the analytical methods used. For this reason, a high number of these standards (55) returned values above the upper analytical threshold. This Standard is of little use in verifying the silver results from the 2011 program but was a good measure of the accuracy of the copper results and a moderately good measure of the gold results.

CRM Standard 170: The copper and gold results for this standard were not as good as the other two. Of the 117 copper analyses, 24 were outside the 2 X St Dev threshold and 7 were outside the 3 x Std Dev threshold (Table 11). The gold results were also not ideal with 19 higher than the 2 x Std Dev upper threshold and 4 outside the upper and lower the 3 X St Dev thresholds. The

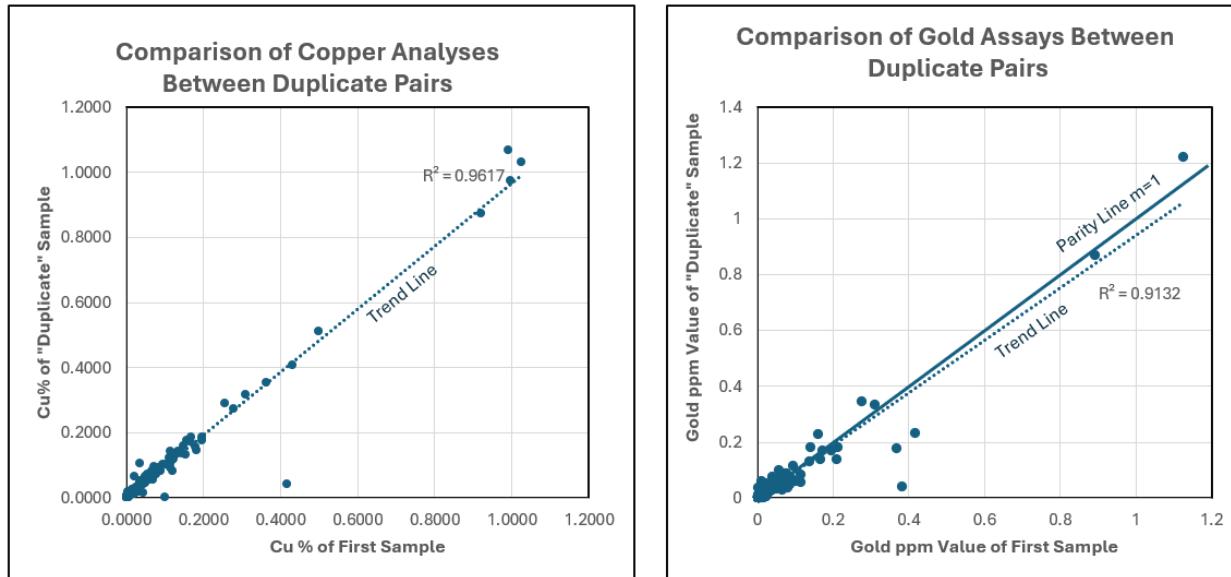
CV for gold in this standard is quite low, just 0.160 g/t Au, and consequently even a discrepancy of 7 ppb Au is statistically consequential but materially not significant. The 116 silver results for this standard were excellent with only 1 outside the 2 x St Dev threshold.

Overall, the combination of the three CRM standards used in the 2011 drill program provide an assurance that the ALS Laboratory results were sufficiently accurate. This assurance requires using the excellent silver results from Standard 170 and the copper and gold results from Standard 152 and 163. In future, every effort should be made to obtain and utilise the best standards available:

- 1) those with levels of copper, gold and silver typical of the expected mineralization,
- 2) those that have been proven, either by the Company's own testing or outside agencies, to produce reliably consistent results.


11.7.3 Duplicate Analyses

As an additional check on the accuracy of the analytical results, a series of duplicate analyses is commonly undertaken during large drilling and sampling programs on significant mineralized zones. Typically, these programs have access to core saws and can accurately saw the core into quarters and then submit two of these quarters for assay as separate samples. The alternate method of generating duplicates by having the lab prepare two samples from the same course crush. The authors prefer this method over quarter-sawing the core and recommend it being used in future drill programs. No duplicates were taken in the 2008 program but this practice was instituted for the 2009-2011 programs.


2009-2010 Data: Figure 32 plots comparisons of the 2009-2010 gold and copper drill sample duplicate data. Both show a high correlation copper data show a good correlation (Desautels, 2011). A few anomalous values occur in both data sets; higher-grade gold and copper values have a tendency to present on or above the parity line.

2011 Data: The correlations between results of the duplicate sample pairs from the 2011 drill core are improved over the 2009-2010 results. The copper correlation is excellent showing a parity very close to 1, as shown in Figure 33. Only one sample out of the 272 pairs plots well off the copper trendline. Similarly, the correlation between gold results is also excellent. One poorly correlated sample pair with values of 1.225 ppm Au and 2.59 ppm Au was left off this graph so as not to expand the chart area well beyond the area of all the other samples.

In the authors' opinion, sample preparation, security and analytical procedures employed to date by Trek Project operators are adequately reliable for the early stage of the exploration work conducted and for the purpose of this Report.

Figure 32: Comparison of 2009-2010 duplicate sample copper and gold results from Desautels (2011)

Figure 33: Comparison of 2011 duplicate copper and gold analysis of drill core samples

12 DATA VERIFICATION

The Independent QP author, Linda Dandy, P.Geo. visited the Trek Property for a single day on August 25, 2025. Before, during and after the site visit the author preformed the following activities to verify the data drawn upon for this Report:

- Reviewed and assessed the historical exploration literature, technical reports and data concerning the Property;

- Verified the mineral titles that comprise the Property, as listed on the British Columbia Government Mineral Titles Online website;
- Verified the geochemical and geophysical data by sourcing original assessment and company reports including analytical certificates;
- Visited in the field the Trek South porphyry and skarn target areas and examined the outcrop geology and mineralization and selected marked rock sample stations;
- Toured via helicopter the steep cliff-side areas of outcrop at the Trek North porphyry and Toe massive sulphide showings as well as the historic core storage area;
- Viewed the cleared Galore Creek access route where it crossed the property, and the nearby camp facility.

The co-author, John Biczok, P.Geo., is very familiar with all of the work performed on the Trek claims from 2018 to 2025, having personally conducted and/or supervised the field work each year other than the brief hyperspectral mapping program by HEG & Associates in 2020. This author ensured the accuracy of all assay data during that period, and monitored and/or assisted in the 2022 IP and MT geophysical surveys. This author is also responsible for maintaining the Company's claims and is therefore very familiar with the details of these tenures. As part of preparing this Report, this author:

- Re-read all of the previous assessment reports.
- Personally compared assay certificates from the 2008-2011 drilling programs with the data files in the reports and on the Company's cloud-based server service.
- Thoroughly reviewed and checked the data verification work reported by the author of the 2011 NI 43-10 technical report.

In the authors' opinion the data verifications performed both through on-site observation and review of the historical reports, are adequate to support the recommendations for further work made in this Technical Report.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing studies or metallurgical tests have been undertaken to date on samples from the Trek property.

14 MINERAL RESOURCE ESTIMATES

There is no mineral resource delineated on the Trek property.

15 MINERAL RESERVE ESTIMATES

There is no mineral reserve delineated on the Trek property.

16 MINING METHODS

As there is no mineral resource nor reserve delineated on the Trek property, there has been no discussion or study of potential mining methods.

17 RECOVERY METHODS

As there is no mineral resource nor reserve delineated on the Trek property, there has been no discussion or study of recovery methods.

18 PROJECT INFRASTRUCTURE

There is currently no infrastructure on the Trek claims other than the partially cleared GCMC road route that crosses the claims in an east-west direction along the Sphaler Creek valley.

In 2011, Romios engaged Knight Piésold Consulting (KPL) to undertake a preliminary assessment of potential future infrastructure needs and possible options for the Trek project (Ainsley, 2011). After a three-day field visit they outlined a number of options for campsites on the property, micro-hydropower sites on the claims, access road alignments and potential mill and tailings management facilities. This work envisaged potential development of the Trek North and/or Tangle site and as such the options presented by KPL are no longer considered relevant to the current focus on the area of the Trek South prospect.

As noted in Section 4, a gravel road has been partially constructed by GCMC, the owners of the Galore Creek deposit, from a point north of the Bob Quinn airstrip on Highway 37, approximately 62 km east of the Trek claims, up to the eastern edge of the claims. The Canadian Federal government awarded GCMC \$20 million in late 2024 to complete a central portion of this road. If GCMC proceeds with development of the Galore Creek deposit, they will finish the remainder of this road up to their proposed mill and tailings site at Round Lake, 12 km east of Trek and thence west to the entrance of the proposed mine access tunnel portal several kilometres east of Trek. Past plans for the development of Galore Creek included the installation of a diesel fuel pipeline along this access road and a slurry pipeline to carry ore from the mines to the mill. It is not known if these pipelines are still part of the current plans for any potential mine development. The 2011 NI 43-101 report on the proposed Galore Creek development prepared by AMEC Americas Ltd. for GCMC in 2011 (Gill et. al., 2011) envisaged an 87 km long, 287 kV powerline from the BC Hydro substation at Bob Quinn. Current GCMC publications on their website indicate that tying into the BC Hydro grid is still planned if development proceeds.

There is no certainty that any development at the Trek site would be able to utilise infrastructure developed by GCMC but such cooperation and cost-sharing would be a benefit to both parties.

19 MARKET STUDIES AND CONTRACTS

As there is no mineral resource nor reserve delineated on the Trek property there has been no discussion or study of the potential market for the commodities present or contracts for their sale.

20 ENVIRONMENTAL STUDIES, PERMITTING and SOCIAL OR COMMUNITY IMPACT

Given the lack of any mineral resource or reserve on the Trek property and the grass-roots to early-stage nature of the exploration work so far, all past permits and studies and those currently underway at the time of this report are related to the exploration drilling programs.

20.1 Mines Act Permit

Mines Act Permit MX-1-756: A new amended Mines Act permit was granted for the Trek Property on November 3, 2025, by the BC Ministry of Mining and Critical Minerals. The permit expires March 31, 2031. This permit, MX-1-756, is a 5 year renewal of the pre-existing permit that has been in place since 2008 and authorizes mineral exploration activities as detailed in the Notice of Work and Reclamation Program (NOW) filed by Romios and dated March 16, 2025. The Notice of Work and Reclamation Program was reviewed by the Ministry and found to be acceptable. The Permit authorises a series of up to 35 drill sites, 20 heli-pads, a drill camp, and 18 km of geophysical surveys with exposed electrodes (i.e., IP surveys). A reclamation bond of \$91,000 has been posted.

20.2 Archeological and Environmental Studies

20.2.1 2012 Studies

In 2012, Romios engaged ECOFOR Natural and Cultural Resource Consultants of Prince George, BC, to undertake an Archeological Overview Assessment (AOA) of the Trek claims area (Horrell, 2012). This AOA involved a literature and database search of the area in order to determine areas with reasonable potential for the presence of cultural heritage resources. This study suggested that lower elevation areas along and south of deeply incised Sphaler Creek, which is forested, had potential for the presence of archeological sites and material. A Preliminary Field Reconnaissance (PFR) was recommended as a follow-up to this AOA but apparently no sites on the Trek claims were investigated at that time. This report noted that no previously recorded archeological sites were known in the project area.

20.2.2 2025-26 Studies

As a condition for renewing the Mining Act Permit in November 2025, a new Archaeological Overview Assessment study had been requested by government authorities, along with a Wildlife Management Plan and an Exploration Reclamation and Closure Plan. In July 2025, Romios therefore engaged the consulting firm ERM, which has a long-standing partnership with the Tahltan First Nation under the Tahltan ERM Environmental Management or “TEEM” umbrella, to undertake the following archeological and environmental studies, all of which are underway at the time of this report.

20.2.2.1 Heritage Conservation Act Permit and Archaeological Overview Assessment (AOA)

An application for a Heritage Inspection Permit under the Heritage Conservation Act was submitted by TEEM to the BC government archaeology branch in September 2025, and is progressing. This permit will allow TEEM to conduct baseline archaeological overview assessment studies, commencing in January 2026, to identify (locate and map) the distribution and density of any cultural materials and deposits that may be present in the project area. The Trek South project area and any surrounding areas above treeline, which at just over 1,000 metres is relatively low in this area, were largely covered by glacial ice until the past few decades, a setting which would have been inhospitable to life for millennia. No indications of historic cultural sites have been found during exploration work. However, as noted by the Ecofor study, there is a possibility that cultural sites may be present at lower elevations along Sphaler Creek.

20.2.2.1 Wildlife Management Plan

In the summer of 2025, Romios also engaged ERM/TEEM to undertake a Wildlife Management Plan in order to facilitate exploration and operations while minimizing potential effects on wildlife during this work. Under the terms of the current Mines Act Permit, drilling and related work cannot commence until after July 16th, so as to minimise disturbance to any ungulates (mountain sheep and goats) that may be present in the area during calving season. Romios personnel have never observed any ungulates in the Trek South area, although bear activity was noted in 2025. The WMP under development, a draft of which has been received, will provide measures including, for example, the potential plotting of flight corridors into and out of the area to reduce or eliminate the impact of exploration activities on local wildlife and possibly allow for an earlier start to the field season.

20.2.2.2 Exploration Reclamation and Closure Plan

In November 2025, Romios further engaged ERM/TEEM to prepare an Exploration Reclamation and Closure Plan (ERCP) to satisfy the conditions laid out in the Mines Act Permit. This plan is expected to incorporate industry standard practices for reclaiming drill sites, erosion control, remediation of any trails constructed, etc. As of the date of this report a draft plan has been received. Completion will be subject to a site visit by ERM/TEEM personnel at the start of the anticipated 2026 field season.

20.3 First Nations Engagement

Since the resumption of Romios' exploration work on the Trek claims in 2018 after a hiatus of several years, the Company has successfully engaged with the Tahltan Central Government (TCG) in the following manner:

2018: Resumed contact with the TCG beginning in February with letters and e-mails, culminated in the signing of a formal Communication Agreement between Romios and the TCG on October 1st, 2018. In the Fall of 2018, Romios optioned a large portion of their adjoining Newmont Lake property to Crystal Lake (now Enduro Metals Corporation) and Crystal Lake assumed leadership and responsibility for engagement with the Tahltan on behalf of Romios for the next few years, to early 2022.

2023: On January 23rd, 2023, Romios signed a Communication and Engagement Agreement with the TCG, which remains in force and provides a framework for ongoing communication and cooperation.

Going forward, in order to undertake a drill program and any other substantial exploration work on the Trek claims, the Company expects to update the Communications and Engagement Agreement with the TCG in the first half of 2026.

21 CAPITAL AND OPERATING COSTS

As there is no mineral resource or reserve delineated on the Trek property, there has been no discussion or study of the potential capital requirements or operating costs.

22 ECONOMIC ANALYSIS

As there is no mineral resource or reserve delineated on the Trek property, there has been no economic analysis undertaken.

23 ADJACENT PROPERTIES

The Trek claims are adjoined by Romios' Andrei claims to the east and the Trek SW and Southwest claims to the west (Figure 34). To the north they are surrounded by claims belonging to GCMC and to the south by claims held by Skeena Gold + Silver/Questex Gold & Copper Ltd. Currently there are several major active exploration and mining projects in the vicinity of the Trek Claims and a number of less advanced projects that may have some similarity to the Trek South occurrence (see Figure 34). The most relevant of these, that may have some bearing on future exploration activity at Trek, are described below. The QPs have not verified the published information regarding the adjacent properties referenced below, and the information is not necessarily indicative of mineralization on the Trek property.

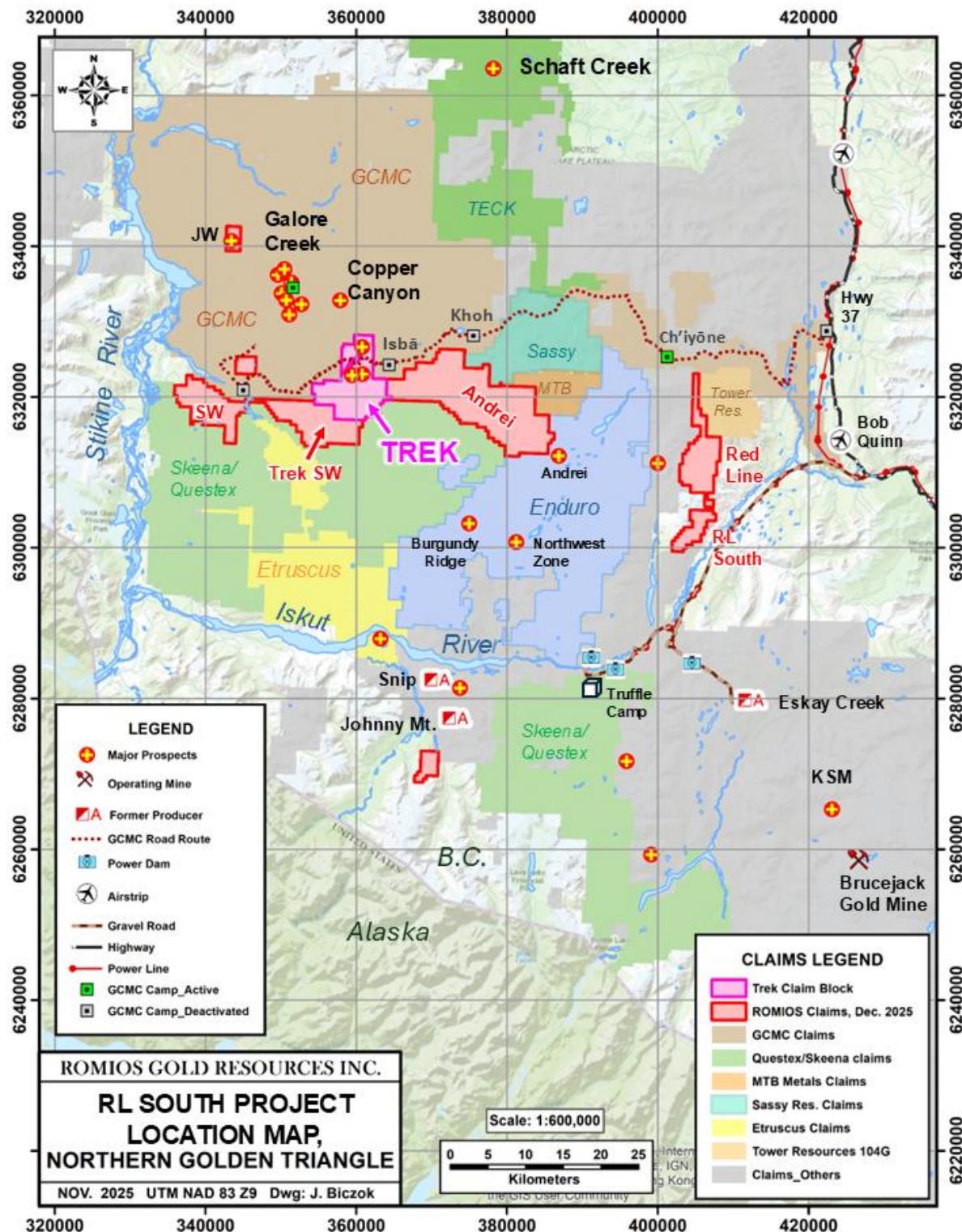


Figure 34: Major prospects and mineral deposits in the Trek project region

23.1 Galore Creek Alkalic Porphyry Deposit(s)

The enormous Galore Creek alkalic porphyry Cu-Au-Ag deposit, owned by a 50:50 JV between Teck and Newmont, is actually a cluster of at least nine closely spaced individual deposits - the large Central Zone which contains about 85% of the resource, flanked by at least eight other deposits. These deposits are grouped together in an area about 5 km N-S by 3-4 km E-W that begins ~8 km northwest of the Trek claims. The project is currently in the pre-feasibility study stage and work in recent years has included extensive geophysical surveys and diamond drilling infill and step-out holes around the known deposits, as well as various engineering and geotechnical studies; efforts are now focussed on updating the environmental and social baseline studies, permitting, the development schedule, and the project investment case (Ref. GCMC 2025 two-page brochure available on their website).

Galore Creek is a prime example of the silica-undersaturated type of alkalic porphyry Cu-Au-Ag deposits. The host rocks here have a feldspathoid normative chemistry and leucite (altered to pseudoleucite) is a primary mineral in some of the large suite of pre-mineralization extrusive volcanic phases and the syn-mineralization intrusions; k-feldspar megacrystic syenites are an important phase in the late-mineralization intrusive suite (Lee *et al.*, 2024). Such a distinctive, highly alkalic suite is rare in the region but occurs at a number of other copper porphyry systems including Trek North and the Burgundy Ridge occurrence 24 km to the southeast. Intrusive, hydrothermal breccias are an important locus of mineralization at Galore Creek and similar, well mineralized breccias are exposed at Trek North and were intersected in drilling there by Romios. Garnet and diopside-rich, skarn-like alteration and replacement mineralization within the volcanic rocks is common in alkalic deposits like Galore Creek, more so than the vein and fracture controlled style mineralization in a pluton typical of the calc-alkaline type of porphyry deposit.

The stated resource figures for Galore Creek as of 2023 are 1,196.8 million tonnes measured and indicated grading 0.46% Cu, 0.26 g/t Au and 4.5 g/t Ag, plus another 237.8 million tonnes at a lower grade in the inferred category (Teck Resources 2023 Annual Information Form). The current project proposal calls for an initial 21 year mine life from a series of open pit mines and the construction of a ore processing mill and tailings management facility at Round Lake in the West More valley approximately 13 km northeast of the Trek South site. This site is very close to the headwaters of Sphaler Creek, on the eastern flank of a rise of land that separates these two valleys and ensures that any tailings facility in the West More valley could never leak into Sphaler Creek. These valleys would provide relatively easy access for any development on the Trek claims into the Round Lake area and the GCMC road route out to Highway 37.

Plans for accessing the Galore Creek deposits from the West More mill site – Sphaler Creek area have fluctuated over the years, at one point calling for a mine access road, ore slurry pipeline and a diesel fuel pipeline for approximately 33 km along Sphaler Creek west to the Porcupine River area and then turning northeast and going through a 4 km tunnel into the Galore Creek valley (Figure 2). This road route as been logged and partially cleared in some places. This access plan

has been replaced in recent years with a plan to bore a tunnel approximately 11 to 14 km long from a point ~2 to 4 km east of Trek South, northwest under the mountains to exit near Copper Canyon and then by road about 5-6 km into the main Galore Creek valley. It is unclear of the route across the Trek claims to the Porcupine River will be completed by GCMC at some point under this scenario.

23.2 Copper Canyon

The Copper Canyon deposit is located about 7 km ESE from the Galore Creek Central Zone and 7.6 km NW of Trek North. It was acquired from Novagold by GCMC in 2018 and has a historical inferred resource of 152 MT @ 0.31% Cu, 0.52 g/t Au and 6.3 g/t Ag (Morris, 2010) that GCMC is reportedly updating. This deposit is hosted by the same pseudoleucite-bearing Galore suite of alkalic intrusives and volcanics as the deposits at Galore Creek.

23.3 Schaft Creek

The Schaft Creek Cu-Au-Mo-Ag project is a very large porphyry deposit located 41 km NNE of Trek North. The project is managed through the Schaft Creek Joint Venture, 75% owned by Teck Resources Ltd. and 25% by Copper Fox; Teck is the operator. A Preliminary Economic Assessment (PEA) by Tetra Tech in 2021 stated the M+I mineral resource as 1,346 million tonnes grading 0.26% Cu, 0.16 g/t Au, 1.25 g/t Ag and 0.017% Mo, with a further 344 million tonnes of lower grade material in the inferred category (Ghaffari et. al., 2021). This report envisaged a 21 year mine life from a 133,000 tpd open pit producing 5.0 billion pounds of copper, 3.7 million ounces of gold, 226 million pounds of molybdenum, and 16.4 million ounces of silver (Tetra Tech, 2021). At 2021 metal prices and costs, the post-tax NPV was calculated at USD \$842M.

The 2021 PEA assumed road access to the mine via the first 65.2 km of the Galore Creek access road and then by a new 40 km road constructed from that point (where Teck's claims, coloured in green, meet the GCMC road route on Figure 34) northward up the Mess Creek valley to the mine site. This new road would begin somewhere between 21 and 30 km east of the Trek claims. Copper Fox's news release dated October 16, 2025 reports that the 2025 field work program was aimed at determining the project's readiness to transition to a prefeasibility study stage and included geotechnical drilling, geophysical surveys and geometallurgical work.

23.4 Newmont Lake – Enduro Metals

The large Newmont Lake claim block held by Enduro Metals Corp. adjoining the south margin of Romios' Andrei claims, 19 km southeast of the Trek claims (Figure 34), includes a number of prospects with some similarity to those on the Trek claims including the Burgundy Ridge alkalic porphyry, the Northwest Zone retrograde skarn/manto deposit, and the recently discovered Andrei porphyry prospect. The majority of this claim block was previously held by Romios and was optioned in 2018 and eventually sold to Crystal Lake Mining Corp. (now Enduro) in 2022. In that option agreement, Romios was granted a 5 km area of influence (AOI) around the original claim block and numerous peripheral claims have been acquired by Enduro since that time which

are also subject to this agreement. Romios holds a 2% in the original claim block and any claims acquired since within the 5 km AOI. In the event that one or more NI 43-101 compliant resource estimates which collectively exceed 1,000,000 ounces of gold equivalent resources (being the sum of indicated and inferred) are issued, Enduro will issue 2,000,000 shares to Romios. An additional 1,000,000 shares will be issued to Romios for each full 1,000,000 additional ounces of gold equivalent resources which is so documented.

The North West Zone Cu-Au retrograde skarn and chimney-manto deposit was the first significant prospect discovered on the Newmont Lake property, by Gulf International Minerals (Gulf) in 1987 (Grove, 1987) who then drill tested (148 holes) and explored this prospect from 1987 to 1990 (Nicholson, 2004). Nicholson and Sim (2007) calculated a historic mineral estimate of 1,406,000 tonnes @ 4.43 g/t Au, 0.22% Cu, and 6.4 g/t Ag at a cutoff grade of 2 g/t Au Eq. Romios acquired the Newmont Lake claims in 2005 and undertook an IP survey and drilled 5 holes on the North West zone. Crystal Lake/Enduro drilled numerous holes here from 2018 to 2021, some with impressive results, e.g., 8.85 m @ 31.09 g/t Au and 1.07% Cu in hole NW20-09, and apparently extended the known mineralized zone along strike and to depth but did not publish an updated resource estimate (see press releases available on Enduro Metals website).

In 2013, Romios' exploration crew discovered a broad zone of skarn-type mineralization at Burgundy Ridge (see Romios press release Sept. 4, 2013), associated with a large exposures of a broad suite of Galore Suite syenite dykes including a pseudoleucite porphyritic variety. Subsequent major drill programs by Crystal Lake/Enduro returned a best intersection of 331 m @ 0.71% CuEq in 2021 (DDH BR21-01, see Enduro Press Release Nov. 18, 2022). Burgundy Ridge is the southernmost one of the line of alkalic porphyry occurrences that includes Galore Creek and Trek North (Figure 19). In spite of the broad zones of strong skarn development and porphyry-skarn style mineralization, Enduro's work shifted focus in 2023 to the recently discovered Andrei porphyry Cu-Au target and a target on the SW corner of the property as of 2025. The Andrei porphyry target, formerly the North Toe, is expected to be drilled for the first time in 2026.

23.5 Eskay Creek

As noted in Section 7.6.10, the Toe Zone on the Trek claims is believed to be an Eskay Creek type deposit as described in Section 8.3.1. The past-producing Eskay Creek mine, located 68 km southeast of the Toe Zone, was one of the world's highest grade Au-Ag mines from 1994 to 2008 and is now being redeveloped as a proposed open-pit mine by Skeena Gold + Silver (Skeena) who anticipates first production in 2027. The deposit contains proven and probable reserves of 3.3 million ounces of gold and 88 million ounces of silver (see Skeena website for reserve and resource and forecast production details). A 12 year mine life is currently envisaged, producing 228,000 oz/year Au and 6.6 million ounces of silver per year, at an average diluted grade of 2.6 g/t Au and 68.7 g/t Ag.

24 OTHER RELEVANT DATA AND INFORMATION

To the authors' knowledge, all relevant data and information on the Property has been provided in order to make this technical report understandable and not misleading.

25 INTERPRETATION AND CONCLUSIONS

25.1 Trek South Zone

25.1.1 Summary

The Trek South Zone is a promising porphyry Cu-Au-Ag prospect with a series of flanking Cu-W skarn occurrences that was only discovered and explored in the past 5 years. It has never been drill tested but geological and geophysical work, primarily since 2021, has outlined a well developed porphyry-style alteration and veining system underlain by a large and strong IP chargeability high that indicates the possible presence of a substantial amount of sulphide mineralization beginning at shallow depths. The 2007 aeromagnetic survey of the claims detected a prominent circular magnetic high beneath the altered area and this is believed to reflect an ~800 m wide, magnetic, source intrusion for the alteration and mineralization event, possibly with an associated biotite-magnetite potassic alteration phase. Trek South is located within 3 km of a known alkalic porphyry occurrence (Trek North), 11 km from the nearest Galore Creek alkalic porphyry deposit, and just 12 km from the proposed mill site for the Galore Creek project. This combination of relatively straightforward access for any future development, presence within a known porphyry belt, and the very promising geological and geophysical evidence makes Trek South a very worthwhile drill target.

25.1.2 Mineralization style and distribution

Geological work at Trek South has outlined an exposed 1.6 km E-W by up to 1.0 km N-S zone of very strong epidote alteration overprinted by a quartz-pyrite vein stockwork that is variably mineralized with often appreciable levels of Cu, Au, Ag +/- Bi, Te, and Mo. The epidote alteration zone is interpreted to be the propylitic outer shell of a porphyry Cu-Au-Ag system, cut by scattered veins and bands of well developed garnet-epidote skarn type alteration. The southern extent of the apparent porphyry system is obscured by the presence of the rapidly receding Trek South glacier. However, the aeromagnetic high inferred to reflect the source pluton and/or the associated biotite-magnetite potassic alteration zone continues at least 300 m south under the glacier, and mineralized skarn and porphyritic rocks retrieved from a medial moraine indicate that the porphyry and associated skarns extend at least 600 to 700 m south of the Trek South exposures, giving an apparent total N-S extent of about 1.3 km.

The Main or Northern Skarns along the northeastern margin of the Trek South alteration zone, which are 200-300 m from the presumed source pluton, are underlain by a strong IP chargeability

high that is approximately 100 m wide immediately under the North Skarn but which widens out dramatically to over 500 m starting at a depth of about 100-200 m. Such a wide and strong response may reflect a strengthening into either a significant skarn zone, or a transition into the presumed underlying porphyry system.

25.1.3 Genetic Model for Trek South

The Trek South alteration and mineralization occurrence is believed to be a porphyry Cu-Au-Ag system developed above and around the buried intrusion suggested by the ~800 m wide circular aeromagnetic high. The genetic model currently followed by Romios, and considered valid by these authors based on the knowledge accumulated to date, is the standard porphyry copper model, either the calc-alkaline variety as shown in Figure 20 or the alkalic variation shown in Figure 21. While the Trek North occurrence, located 3 km north of Trek South, is clearly related to an alkalic suite of intrusions and volcanics, this association has not been proven at Trek South and likely will not be known until the area is drill tested. The well developed skarns, with moderate Cu-W mineralization, adjacent to the northeast margin of the Trek South alteration zone are believed to be related to the same intrusive event as the porphyry system.

Feldspar-biotite porphyritic dykes contemporaneous with the alteration-mineralization event may well be offshoots of, or comagmatic with, the buried pluton. The great intensity of the epidote alteration at Trek South, the Cu-Au-Ag +/- Bi-Te-Mo mineralization of the quartz-pyrite veins, and the local biotite-magnetite alteration observed in outcrop are all highly supportive of the porphyry copper model.

25.1.4 Risks and Uncertainties with the Model for the Trek South Zone

In spite of what appears to be compelling evidence for the presence of a porphyry Cu-Au-Ag system underlying the Trek South alteration-stockwork-skarn zone, until this target is drill tested there will be some risks and uncertainties with the model. These include:

- 1) Although the IP response indicates the possible presence of a large quantity of sulphides at depth and copper minerals such as chalcopyrite and bornite are found on boulders derived from under the Trek South glacier, there is always a risk that barren or weakly mineralized pyrite may predominate over copper minerals at depth and the grades encountered in drilling may be sub-economic.
- 2) The spacing of the IP survey lines leaves room for a possible lack of continuity between the sulphide zones detected at depth, even though the overlying alteration and veining is quite continuous.
- 3) The apparent change in the strike direction from the centre to the northeast corner of the Trek South target, and the presence of the Eocene intrusion in this area, may make it difficult to follow the mineralization cost-effectively with the drilling. For this reason additional lines of IP surveying are recommended in this area (See Section 26).

25.2 Trek North Zone

25.2.1 Summary

The Trek North Zone is an example of an alkalic porphyry Cu-Au-Ag occurrence associated with the relatively unique Galore Creek plutonic suite of silica undersaturated alkalic volcanics and intrusives including pseudoleucite-bearing phases, monzonite dykes and orthoclase porphyritic syenite. As is often the case in this type of deposit, the best mineralization at Trek North was found in one of two hydrothermal-magmatic breccias. The Upper Breccia has returned significant drill intercepts but has proven difficult to delineate. The Lower Breccia was discovered in the last few drill holes of the 2011 program, returning several high-grade intercepts in a breccia zone which occurs along the top of a shallow-dipping orthoclase porphyritic syenite and appears to be open in several directions. In addition to these higher grade breccia targets, three shallow-dipping, low-grade mineralized shells follow volcanic contacts dipping into the mountainside.

A complete review of the geological data and re-modeling of the drill results from Trek North are warranted and recommended in Section 26.

25.2.2 Mineralization style and distribution

The Trek North alkalic porphyry occurrence consists of a mix of two main mineralization styles over a combined extent of at least 720 m x 260 m and open to the northeast:

- 1) Veinlet and fracture controlled chalcopyrite>pyrite mineralization in the core of the system grading outwards to distal pyrite>>chalcopyrite mineralization, forming 2-3 sub-horizontal zones with the best portions being 20 m to 115 m thick. These zones are hosted by the andesitic volcanics as well as monzonite dykes and they dip shallowly to the north and appear to thin to the west and northwest.
- 2) Hydrothermal-magmatic breccias with either Cu-Au-Ag or Cu-Ag rich mineralization centred in two areas:
 - a) The Upper Breccia is exposed on the cliff face at the west edge of the Trek North zone where it occurs as swarms of breccia pipes, each 3 m to 15 m across and well mineralized with chalcopyrite, bornite, pyrite and pyrrhotite. One of the breccias was intersected 100 m away (east-northeast) in the initial drilling (46.6 m @ 1.49% Cu, 0.77 g/t Au and 16.76 g/t Ag in angle hole TRK-08-01) but the full extent of these breccias has proven difficult to delineate due to bad ground conditions, a footwall fault, and the shape and orientation of the breccia pipes. Drilling has demonstrated that there is a mineralized shell around the breccia bodies for at least 40-50 m in some cases. An initial 3D model of the breccias indicate that they dip 30° to the north based on limited drilling.
 - b) The Lower Breccia was intersected by several deep drill holes (~700 – 750 m) spaced 150 m apart and remains open to the northeast. The mineralized intercepts vary from 22.6 m to 81.6 m in thickness with a best result of 1.1% Cu and 18.6 g/t Ag over

22.6 m. The breccia consists of 75-80% potassic altered clasts in a chlorite-anhydrite-prehnite rich matrix and the dominant sulphides are chalcopyrite, pyrite and pyrrhotite. It generally has higher silver content and lower gold content than the Upper Breccia.

25.2.3 Genetic Model

Lying beneath and interfingered with the Lower Breccia is an orthoclase-porphyritic syenite, sill-like intrusive body 50-95 m thick that thickens to the northeast and is locally pseudoleucite-phyric. The lower contact of the orthoclase porphyry is paralleled by, and locally truncated by, a shallow-dipping thrust fault. Based on limited drilling to date, the Cu-Ag-rich Lower Breccia and the interfingering orthoclase porphyry are believed to have intruded upwards at a shallow angle from a mineralized alkalic intrusion at deeper levels to the northeast, possibly guided by the footwall fault in this area. The possibility that this mineralization and related porphyry is derived from the source of the large TITAN 24 low-resistivity MT anomaly at depth under Trek North warrants further investigation.

The Upper Breccias cross-cut the host volcanics as well as the local monzonite dykes and determining the location of their root zone and nature of their source intrusions has proven more difficult to determine. They are also assumed to be derived from an underlying alkalic intrusion.

25.2.4 Risks and Uncertainties with the Model for the Trek North Zone

For a number of reasons, including the difficulty in locating the roots and source of the Upper Breccia and the cessation of drilling activity after the 2011 season, a number of questions and uncertainties remain for the Trek North Zone. These include:

1. The distribution of the Upper Breccia pipes may be too sporadic to form a coherent, mineralized block of sufficient size to be economically significant.
2. The “roots” of the Upper Breccia pipes may have been cut off by the footwall fault and locating the potentially mineralized source intrusion at depth may be quite difficult.
3. The Lower Breccia zone, which returned impressive grades over >20 m thicknesses in the last few holes of the 2011 program, appears to be one of the best remaining targets on Trek North. The continuity of this zone down-dip to the northeast along the top of the porphyry intrusion may be affected by the nearby footwall fault and there is no guarantee that the source intrusion will be big enough to generate an economic resource.
4. Based on alteration patterns, the generally lower grade, “porphyry-style” mineralization that forms 2-3 tabular shells dipping northeast into the mountainside was thought by earlier workers to have migrated up-dip from northeast to southwest, implying that the grades and thickness may improve down-dip to the northeast. Given the increasing depth of these zones beneath the rising slope of the mountain above, the drill holes required to keep testing these zones are approaching 1 km in length.

While there are certainly questions and uncertainties remaining Trek North, the potential rewards, especially in expanding the Lower Breccia zone and potentially intersecting a sulphide source for the deep MT anomaly, warrant a thorough review and re-modeling of the past drilling, geological and geophysical results.

25.3 TOE Zone

The TOE Zone is an apparent Eskay Creek type of mineral occurrence that contains at least three sulphidic exhalite horizons ~1 m thick, two thinner sulphide layers, and a 4 m thick felsic horizon, containing various combinations of high-grade Cu-Au-Ag-Zn-Sb mineralization spread across a ≥ 175 m wide series of outcrops. This prospect is now considered to be the most promising target on the Trek claims outside of the porphyry targets. An extensive area of rusty overburden and pyritic outcrops 300-400 m south of the TOE zone outcrops may be the distal portion of this system. No ground geophysics and no drilling has ever been done on the Toe Zone. The results of a renewed detailed mapping and sampling program and at least one line of IP surveying could then be used to decide if drilling is warranted.

25.3.1 Mineralization style and distribution.

Mineralization at the TOE Zone occurs in several styles within a mixed sequence of basalts, felsic volcanics and pyritic argillite. All of the mineralization is likely related to the same Eskay Creek volcanogenic massive sulphide type of process.

- 1) Three sulphide-rich, siliceous exhalites ~1 m wide, are found within the basalt flows. The 20-30 cm wide cores of these horizons are highly mineralized, e.g., 2.2 g/t Au, 809 g/t Ag, 3.9% Cu, 2.7% Zn, 0.9% Pb, and 0.28% Sb over 20 cm.
- 2) A sulphide-rich quartz vein cutting the argillite assayed 0.85% Cu, 17 g/t Ag and 0.27 g/t Au.
- 3) Numerous pyritic, felsic volcanic horizons are found throughout the outcrops, some tens of metres wide. One of these assayed 1.5 g/t Au, 65 g/t Ag, and 0.13% Cu over 4.0 m even though it is highly weathered.

The strike extent of the various zones is limited by the extent of the exposures, typically they are less than a few metres long and trend off under cover.

25.3.2 Genetic Model

As described in Section 8.3.1, the TOE Zone is believed to be an Eskay Creek type of occurrence.

25.3.3 Risks and Uncertainties Associated with Exploration of the Toe Zone

Given the early stage and low-cost type of geological mapping and sampling undertaken so far, and expected to be continued in the next phase of work here, there is little risk involved in exploring the TOE Zone. The next phase of geological mapping and sampling coupled with an initial one-line IP survey will determine if a more extensive geophysical survey is warranted. Once the geological and IP results are compiled an informed decision whether or not to undertake an

initial drill program can be made. As always, there is uncertainty as to the potential size of the mineralized zone(s).

26 RECOMMENDATIONS

The combination of geological mapping, prospecting and geophysical surveys at Trek South has outlined a high-priority porphyry Cu-Au-Ag target underlain by a significant IP-MT anomaly and circular magnetic high and flanked by extensive exposed Cu-W skarn zones. These combined geological and geophysical targets strongly warrant drill testing.

The past mapping and drilling at Trek North partially delineated an alkalic porphyry-style mineralized system that is still open down dip and at depth and includes two potentially significant mineralized breccia bodies. A large MT geophysical target below the historic drilling remains untested. An in-depth re-evaluation of the past results and a re-modelling of the geology is warranted to determine if worthwhile drill targets remain beneath the area previously drilled.

Numerous underexplored mineralized prospects of various types are found across the property between Trek South and Trek North. The most significant of these is the TOE Zone, a series of highly Cu-Au-Ag-Zn-Sb-mineralized exhalative horizons and veins that warrants completion of a detailed geological mapping and sampling program and at least one line of IP surveying. The combined geological and geophysical results can then be used to decide on possible initial diamond drilling of this prospect. A number of other potential porphyry-type prospects that were partially explored in the past deserve focussed exploration programs to determine if they truly have potential for buried porphyry systems at depth; these include the Tundra and Tangle Zones.

The following work is recommended in two phases for these various prospects on the Trek claims. In recognition of the limited seasonal drilling window at Trek, it is recommended that the Company be prepared to advance to the Phase Two program should Phase One be successful.

26.1 Phase One Work Program

26.1.1 Geological Surveys

In addition to the drilling proposed at Trek South in Phase One, several other targets warrant specific programs of geological or geophysical work to assess their mineral potential and determine if they also warrant drilling in future. These areas are shown on Figure 35 and the work programs are described below. If Romios proceeds with the establishment of a drill camp on site, work on these other targets can be done quickly and cost-effectively from this camp. The targets and recommended work programs include:

1. The two IP anomalies east and northwest of the main Trek South target require detailed mapping and prospecting to determine their sources and whether they warrant further geophysics and/or drill testing. The eastern IP anomaly is underlain by Permian limestone and conglomerate and the BCGS has mapped a Triassic quartz

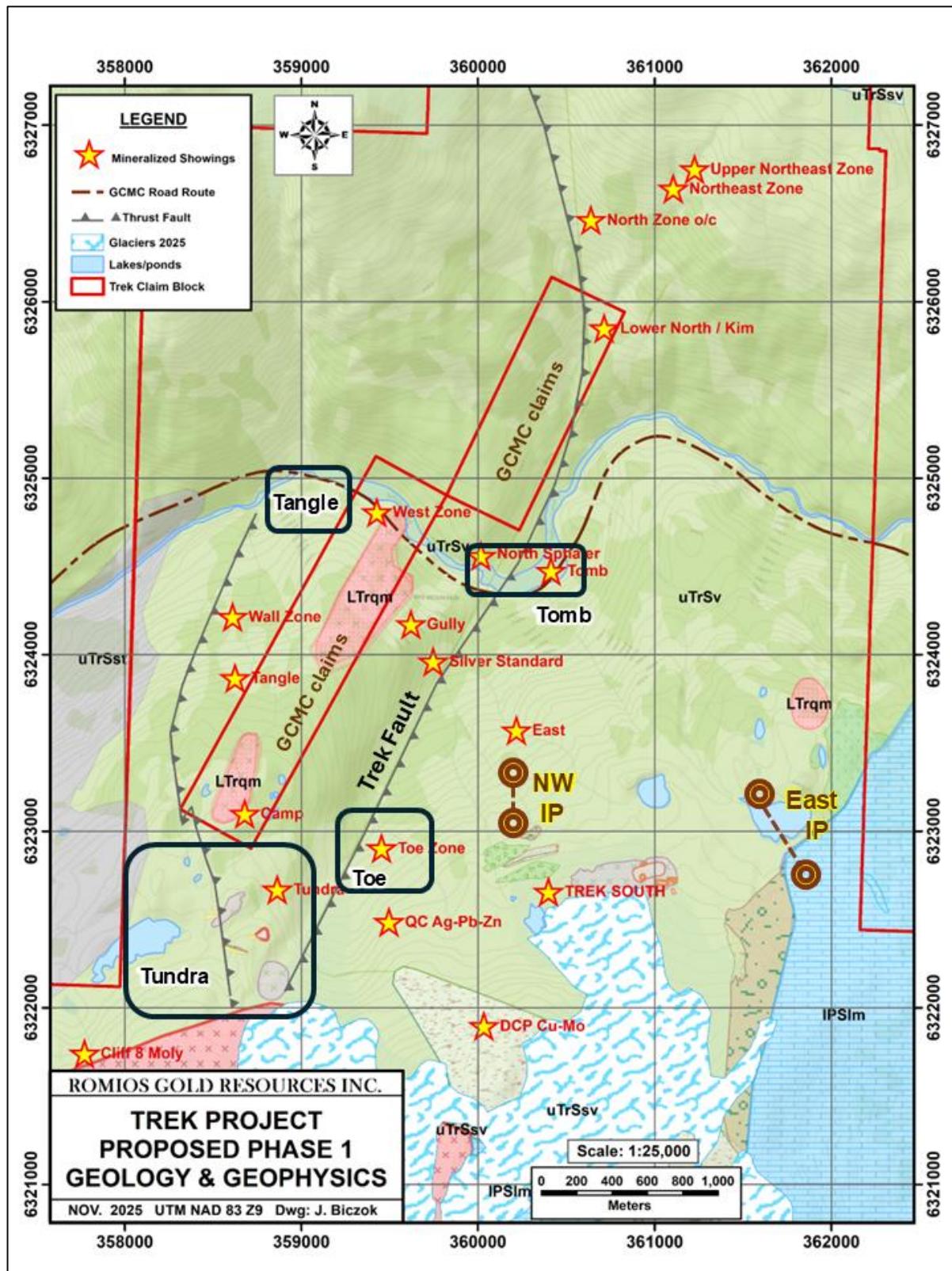


Figure 35: Phase One Target areas outside of the Trek South zone

diorite to granodiorite intrusion in the valley bottom 1.4 km east of this IP anomaly. Such a pluton intruding the Permian limestone has the potential to produce a significant mineralized zone and this possibility warrants a thorough investigation. The northwest IP anomaly is coincident with a white mica and epidote hyperspectral anomaly from the 2020 survey and also warrants a detailed examination.

2. The TOE Zone contains numerous high-grade mineralized horizons in a stratigraphic setting similar to Eskay Creek. It warrants completion of a detailed geological survey and at least one line of IP surveying across the zone. If the IP survey reveals a large chargeability high beneath the Toe Zone it should be drill tested.
3. The TUNDRA Zone was slated for drill testing in 2010 and two drill pads constructed at that time. The most recent mapping by Romios revealed some discrepancies with the earlier mapping and it is recommended that the entire area be re-mapped with an emphasis on carefully delineating the alteration and intrusions. If this work confirms the presence of appreciable alteration the entire area should be covered by a soil sampling grid and 2-3 lines of IP surveying.
4. The TANGLE Zone situation is complicated by the presence of the GCMC claims which cover the majority of the known intrusions in this area. Nevertheless, well developed alteration was reported in Romios' two drill holes here in 2011 and the soil grid results outline an extensive Cu-Ag+/- Au anomaly on the Romios ground. The soil grid should be extended to the north to cover an additional ~300 x 400 m area immediately west of the West Zone underlain by a resistivity low from the 2007 Fugro survey. The past work on the Tangle Zone should be re-compiled, the Tangle Zone drill core re-examined, and if warranted by the results of this work, a series of IP survey lines completed across the zone.
5. The TOMB Zone contains a series of sulphide veins with modest Cu-Au-Ag values in a 150 m wide, discoloured QSP alteration zone containing disseminated chalcopyrite, bornite and pyrite, and it sits within the strongest airborne resistivity low along the Trek Fault. This zone has been largely ignored in the past but it warrants a detailed mapping and sampling program including a documentation of the alteration mineral patterns through the use of hyperspectral analysis.
6. The SILVER STANDARD zone is reported to comprise porphyry-style mineralization and is located midway between the Trek North and Trek South zones. It should be mapped and sampled in detail to determine the true nature and extent of the mineralization and whether it warrants geophysical surveys.

7. A structural re-mapping of the Trek Thrust (?) Fault is also recommended as an aid to the re-modelling of the Trek North Zone. As has been discussed by previous workers, there are some inconsistencies in the current fault model.
8. The TREK NORTH Zone has potential for high-grade alkalic porphyry mineralization in three areas: 1) beneath the mineralized hydrothermal Upper Breccia bodies exposed on the cliff face, 2) down-dip along the trend of the Lower Breccias and 3) within the deep Titan-24 MT anomaly detected by the 2010 survey below the extent of the 2008-2011 drill program. Although there are challenges associated with drill testing these remaining targets (depth of holes, uncertain geometry, etc.), given the potential reward, a second look is recommended in order to refine the geological model and determine what opportunities for discovery exist in this area. The following work is recommended for the Trek North area:
 - A) Re-model the Trek North geology in 3D from prior drilling to:
 - Confirm the true orientation of the underlying “North Zone Footwall Fault” (NZFF) if possible and re-plot the sections perpendicular to the strike of that fault.
 - Better define the monzonite dykes that are said to be linked to the mineralization but are not generally plotted on the existing sections.
 - Determine if the roots of the mineralized breccia pipes are still a valid drill target or if they have been cut off by faulting and/or have already been tested sufficiently.
 - Determine if the Lower Breccias could be spatially linked to the deep MT anomaly.
 - B) Prepare a core yard map and list of the core stored on the Trek property and lay out key holes from Trek North to:
 - Examine the nature of the NZFF fault.
 - Examine the nature of the mineralized breccia bodies (i.e., are they true hydrothermal breccia pipes?).
 - Assess the accuracy of the logged alteration patterns.

If the re-modelling of the geology reveals opportunities for further discoveries, consideration should be given to conducting more deep-penetration geophysical surveys such as MT and/or long-line IP surveys.

26.1.2 Geophysical Surveys

The 400 m wide gap in IP surveying at Trek South between the IP anomaly over the northern skarn zones and the circular aeromagnetic high with its overlying IP anomalies (Figure 36) makes planning drill holes in this area somewhat uncertain. The skarnified strata strike N-S near the northern IP line (2N) and swing to a NW-SE trend going south towards line 1N whereas the

current interpretation of the IP results model a NE-SW trend. This uncertainty in the trend of the target IP anomaly can be resolved with 2 additional E-W IP survey lines, each ~2 km long, between the existing Lines 1N and 2N as shown on Figure 36. This work should be undertaken at the start of the next exploration program and the results used to fine-tuning the planning of the drill holes in this area.

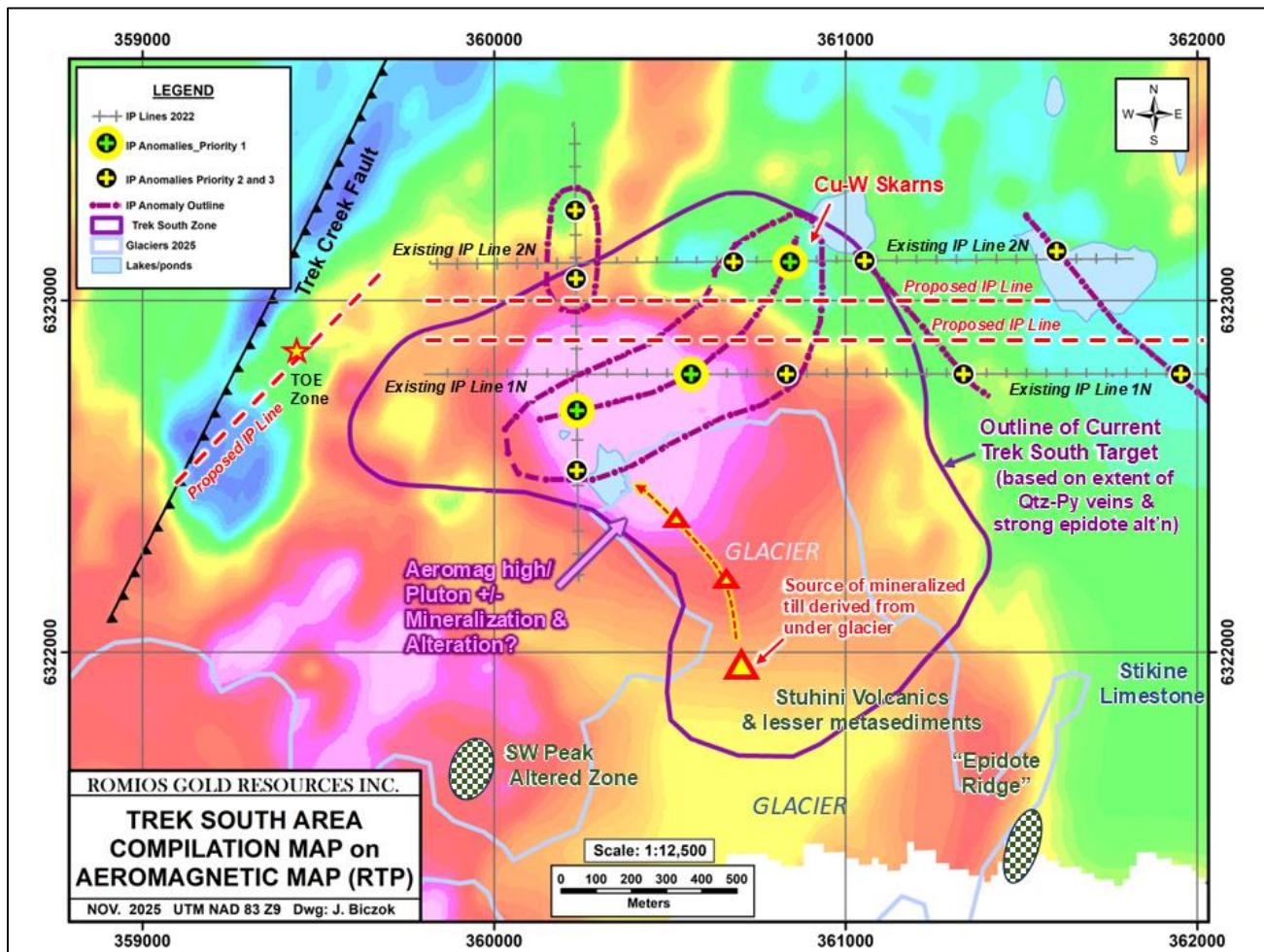


Figure 36: Compilation map of Trek South targets with proposed IP survey lines

26.1.3 Trek South Drill Program

OBJECTIVES: Drill test the combined IP chargeability high and aeromagnetic high under the exposed porphyry style alteration zone, plus the strong and broad IP anomaly under the main skarns.

26.1.3.1 Considerations

DRILL HOLE AZIMUTH: Since the porphyry style of mineralization may be stockwork or disseminated style with a poorly constrained predominant trend, the preferred orientation for the initial drill holes is an estimate at this time. In the core of the exposed alteration system, the predominant trend of the epidote alteration veins is east-west, the few clear examples of intercalated sedimentary and volcanic rocks trend east-west, and the IP chargeability high was interpreted to trend ENE-WSW by Simcoe Geoscience. Therefore, it is recommended that the initial drill holes testing the porphyry centre be aligned approximately perpendicular to that trend on a SSE-NNW azimuth. The choice of azimuth should be reconsidered after completion of the first holes based on the geology encountered. The orientation of the proposed holes testing the skarns northeast of the main Trek South porphyry target (magnetic high + IP anomaly) should be refined after completion of the proposed IP survey lines.

As much as possible, and where geologically appropriate, the initial holes should be drilled along a series of parallel planes in order to simplify the geological interpretation of the results from this new target.

TARGET DEPTH: Based on the IP sections from the 2022 survey and the magnetic inversion model of the 2007 aeromagnetic survey produced by Simcoe Geoscience, the depth to both the top of the magnetic source body beneath the aeromagnetic high and the depth to the point where the IP anomalies widen out significantly are both ~200 m. The proposed drill holes are largely designed with this target depth in mind.

DRILL HOLE SPACING: A drill section spacing of 150 to 200 m apart is considered sufficient for the initial drill program on this porphyry target. This assumption is based on the experience of GT Gold drilling off and defining mineral resources for the Saddle North porphyry deposit in 2020 (K. Keough, *pers comm.*).

COST/METRE: A number of drill programs in the project region in recent years provide data on the typical cost of drilling currently.

- GT Gold's Saddle North all-in drill program cost was \$588/m (inflation adjusted to present - K. Keough, *pers. comm.*),
- Sassy Gold's cost on the Westmore Project near Trek was \$630/m in 2020-22; 36 holes totalling ~8,000 metres (I. Fraser, *pers. comm.*).
- Enduro Metals 2022 program at Newmont Lake cost \$518/m (data in assessment reports).

Based on the experience of these operators and the relative number of drill moves, average hole depths, etc., the estimated cost/metre for a drill program at Trek is \$600/m.

26.1.3.2 Phase 1 Drill Program – Trek South

Eight drill holes totalling 4,650 m of drilling are proposed for the Phase One program at Trek South in order to test both a) the combination of the circular aeromagnetic high and the coincident IP chargeability high/resistivity low, and b) the largest of all the IP anomalies, which underlies the northern skarns and may indicate a transition into a porphyry system at depth (Figure 37). It should be kept in mind that the majority of the mineralization in many alkalic porphyry systems actually occurs as skarn-like zones in the surrounding host rocks.

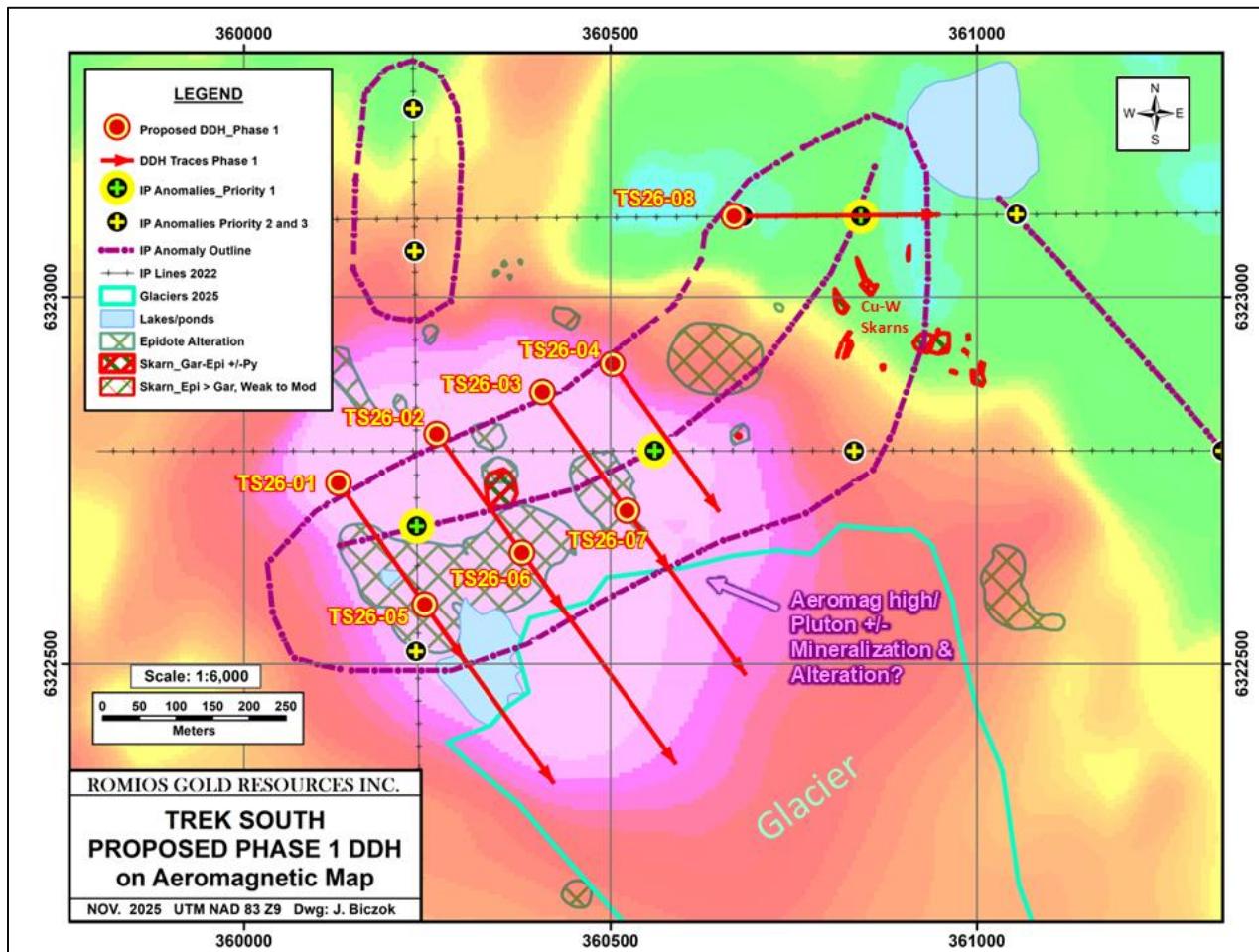


Figure 37: Map of the proposed Phase One diamond drill holes on aeromagnetic base map

The proposed drill holes are numbered in approximate recommended sequence, TS26-01 to TS26-08. Holes TS26-01, 02, 03, 04 and 08 target the IP anomalies (high chargeability-low resistivity) on the 3 survey lines completed in 2022; holes TS26-05, 06 and 07 target the aeromagnetic high and presumed source of Cu-Ag±Au mineralized boulders being pushed south

from within the glacier immediately south of the Trek South Zone exposures. All proposed Phase 1 holes are shown on Figure 37, a compilation of the aeromagnetic and IP targets. Holes testing specific IP targets, both Phase 1 and Phase 2 holes, are also shown on Figure 38. Details of the hole locations, azimuths, depths, targeting, are listed in Table 12.

Table 12: Details of the proposed Phase One diamond drill holes

Hole #	Pad	Easting	Northing	Azim.	Dip	Length (m)	Target	Comments
TS26-01	1	360167	6322748	155	-60	600	IP Anomaly on N-S Line	Consider drilling a 2nd hole at -45 dip if hole #1 hits. Would give ~200 m vertical separation.
TS26-02	2	360263	6322813	155	-60	600	Projection of IP anomaly between N-S & E-W line, + Mag high	Also drilling below a strong skarn zone.
TS26-03	3	360407	6322870	155	-60	600	IP anomaly & Mag high	If results of hole 2 are poor, consider drilling #4 before #3 and adjust #4 based on those results.
TS26-04	4	360503	6322908	155	-60	500	Strong IP Anomaly on southern E-W line	IP anomaly appears to extend beneath the Eocene intrusion, hole may end in it. Consider adding a -45 hole if first one hits mineralization.
TS26-05	5	360246	6322580	155	-60	600	South half of aeromag high	Mineralized, skarnified boulders coming from under ice in this direction.
TS26-06	6	360379	6322652	155	-60	700	South half of aeromag high	Mineralized, skarnified boulders coming from under ice in this direction.
TS26-07	7	360524	6322709	155	-60	550	South half of aeromag high	Mineralized, skarnified boulders coming from under ice in this direction.
TS26-08	8	360669	6323109	270	-45	500	IP anomaly on northern E-W line, <u>largest anomaly on any line</u>	Strong, >500 m wide IP anomaly below Cu-W bearing skarns, possible transition to porph at depth.
Total Phase 1					4650			

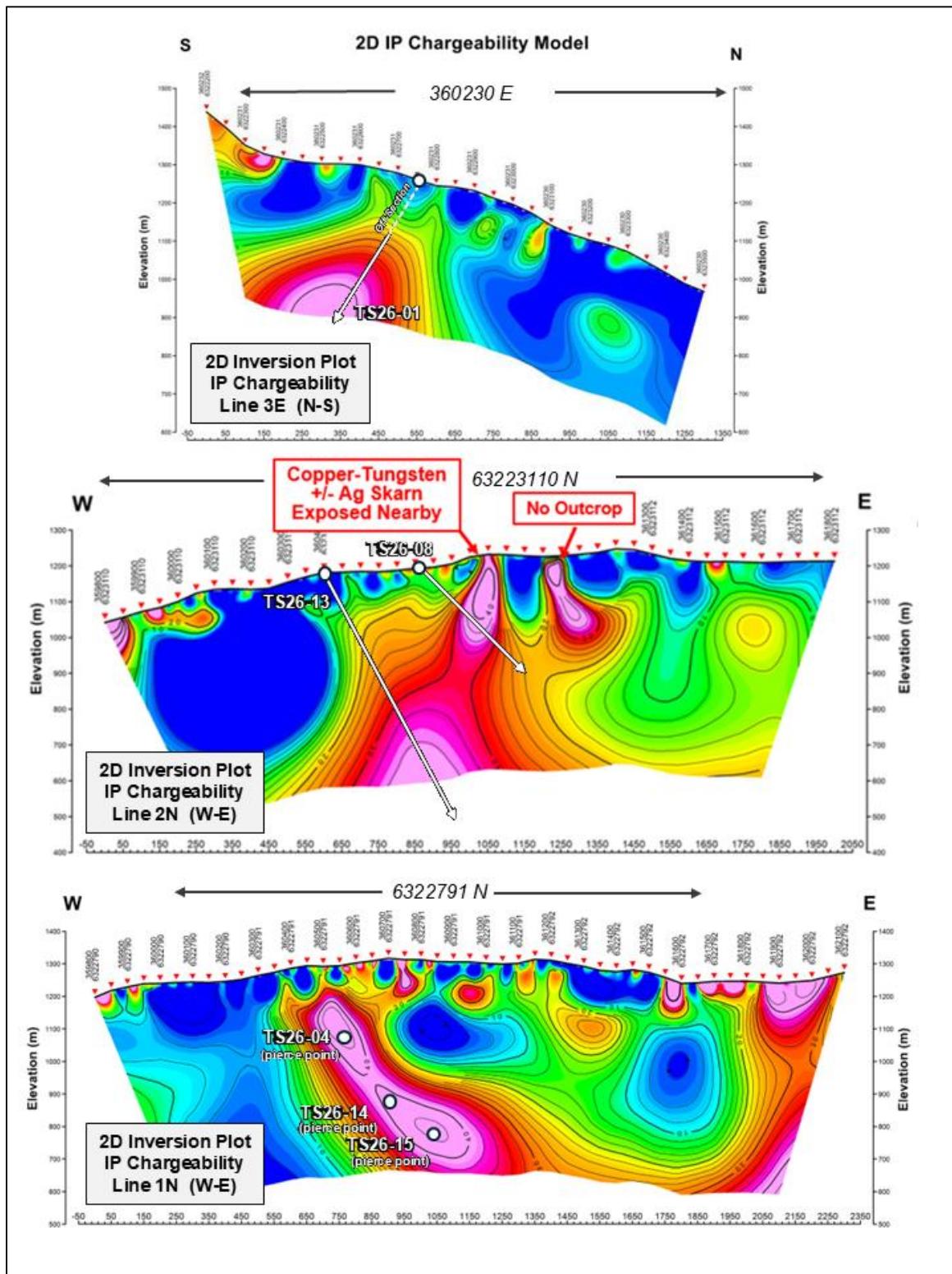


Figure 38: Proposed diamond drill holes plotted on IP chargeability inversion plots

26.2 Phase Two Drill Program

The specific drill holes within the proposed Phase Two program are contingent on encouraging results from the Phase One diamond drilling, and in the case of the TOE Zone, the geophysical surveys and geological work undertaken in Phase One. The drill holes targeting the IP anomaly extending northeast from the vicinity of the circular aeromagnetic high to the northern skarns will almost certainly be re-oriented based on the results of the Phase One drilling and the proposed IP in-fill survey lines. As always, the geologists managing the program should have some leeway to drill holes scheduled for Phase Two earlier if it makes sense based on the incoming drill results, as well as adding an extra hole(s) from the same set-up as a hole that has intersected encouraging mineralization if that mineralization can be delineated over a substantial vertical height with a second hole. The Phase Two Trek South and adjacent skarn drill holes are shown on Figure 39 and details of these, plus a tentative plan for a drill hole at the Toe Zone are listed in Table 13. As noted previously, some of the Phase Two holes targeting the IP on IP Line 1N and 2N (DDH TS26-13, 14 and 15) are also shown above on the IP inversion model sections in Figure 38. A total of eight drill holes totalling 4,600 m is proposed for Phase Two.

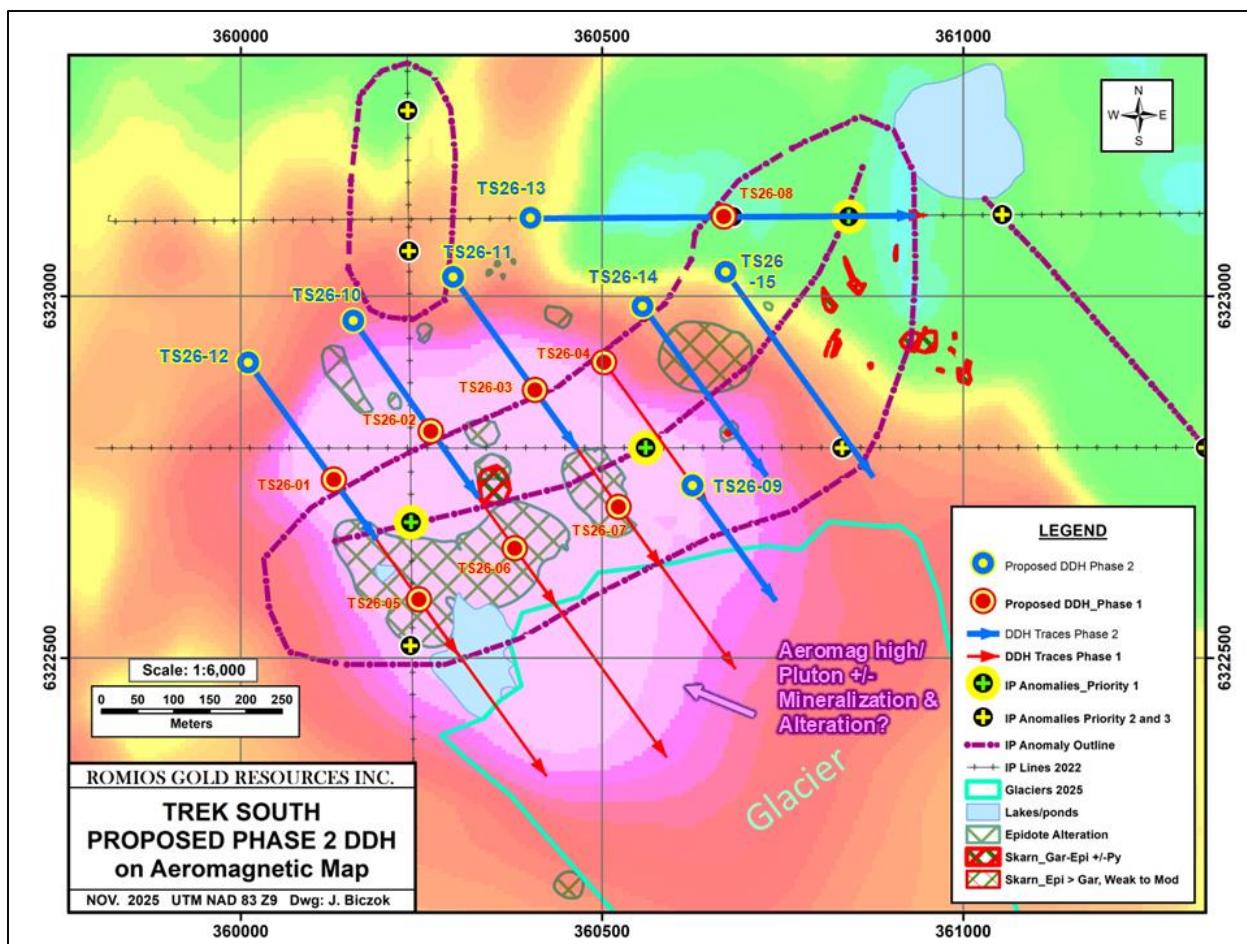


Figure 39: Map of the proposed Phase Two diamond drill holes on aeromagnetic base map

In addition to the drilling proposed in Phase Two, the results of the drilling as well as the various geological, geophysical and geochemical surveys proposed may well lead to additional drill targets that can be tested after Phase Two, or perhaps during it depending on timing, budgets and developing priorities. These include:

1. Trek North: Drill testing the roots of the mineralized hydrothermal breccias and/or the deep MT anomaly if the work proposed in Phase One deems it warranted.
2. Tundra Zone: Drill testing of any significant IP response assuming the geological surveys confirm the presence of a porphyry style alteration +/- mineralization zone.
3. Northern Skarns: If the results of proposed holes TS26-08, 13 and 15 are encouraging, in combination with the results of the proposed IP survey in-fill lines, a series of drill fans should be completed along the intervening ~250 m long extent of these skarns.

Table 13: Details of the proposed Phase Two diamond drill holes

PHASE 2		Pad	Easting	Northing	Azim.	Dip	Length (m)	Target	Comments
Hole #									
TS26-09	9	360625	6322738	155	-60	400	East margin of aeromag high/pluton	Complicated by Eocene pluton, contingent on results of holes 4 & 7	
TS26-10	10	360156	6322966	155	-60	600	North margin of aeromag high/pluton	Drill this centre hole first, will guide flanking holes	
TS26-11	11	360294	6323026	155	-60	600	NE margin of aeromag high/pluton	Adjust collar distance from mag high after results of hole 10	
TS26-12	12	360010	6322909	155	-60	600	NW margin of aeromag high/pluton	Adjust collar distance from mag high after results of hole 10	
TS26-13	13	360400	6323108	90	-62	800	500 m wide, strong IP on northern E-W line	Azimuth may change after hole 8 results. Stratigraphy above IP target is ~perpendicular to this trace. Drill from west to set up on bedrock, thick till east of target.	
TS26-14	14	360557	6322986	155	-60	600	Strong IP Anomaly on southern E-W line	May adjust after results of hole #4 and proposed IP infill survey	
TS26-15	15	360671	6323033	155	-60	700	Strongest, largest part of IP Anomaly on southern E-W line	May adjust after results of hole #4 and 14 and proposed IP infill survey. Consider aiming a bit deeper and wedge up 1 or 2 more holes.	
TS26-16	16	359391	6322780	45	-46	300	TOE ZONE: Expected IP anomaly underneath the multiple mineralized horizons.	Co-ords approx. To be refined based on final mapping of the site.	
		Total Phase 2			4600				

26.3 Budget

An estimated budget for the recommended work program is presented in Table 14. The all-in cost estimated for drilling is taken from recent programs on nearby projects and is comparable to a line-by-line budget estimate. In recognition of the limited seasonal drilling window at Trek, it is recommended that the Company be financially prepared to move immediately into Phase Two should Phase One be successful.

Table 14: Estimated budget for Phase 1 and 2 programs

PHASE ONE BUDGET				
ITEM	# UNITS	UNIT COST	COMMENTS	COST
Drilling	4,650	\$600/m	All in cost incl. pads, mob-demob, fuel, camp, assays, helicopter support.	\$ 2,790,000
Geophysics	7 km	\$22,000	IP at Toe and Trek South, incl heli support. Assumes minimal mob-demob.	\$ 154,000
Soil sampling	200	\$75	incl. assay and personnel	\$ 15,000.00
Personnel	400 person days	\$600	4 geologists, 1 core cutter	\$ 240,000
Report	1	\$30,000		\$ 30,000
Re-model Trek North	1	40,000	Contracted out to produce a new 3D model addressing various questions	\$ 40,000
10% Contingency				\$ 326,900
			TOTAL COST	\$ 3,595,900

PHASE TWO BUDGET - Expanded program +/- a 2nd drill rig				
ITEM	# UNITS	UNIT COST	COMMENTS	COST
Drilling	4,600	\$600/m	All in cost incl. pads, mob-demob, fuel, camp, assays, helicopter support.	\$ 2,760,000
Personnel	180 person days	\$600	2 geologists, 1 core cutter	\$ 108,000
Expanded Report	1	\$15,000		\$ 15,000
10% Contingency				\$ 288,300
			TOTAL COST	\$ 3,171,300
			TOTAL PHASE 1 & 2	\$ 6,767,200

27 LIST OF REFERENCES

Adaszynski, B., Lane, T., Samari, H., Fogarty, J., Stilwell, I., Schmitt, R., MacDonald, A.J., Baldwin, D., Baisley, S.A., 2023: Eskay Creek Project, British Columbia, NI 43-101 Technical Report on Updated Feasibility Study; Technical report prepared on behalf of Skeena Resources Limited by multiple consulting firms.

Ainsley, K., 2011: Memo to Romios Gold Res. Inc. re: Infrastructure Planning for the Trek and Newmont Lake Property, 13 pages.

Awmack, H.J., 1991: 1990 Geological, Geochemical and Geophysical Report on the Trek 1-6 Claims; BC MMCM Assessment Report #20956.

Awmack, H.J., 2008: 2007 Geophysical Report on the Trek and RP Properties; Assessment report on behalf of Romios Gold Resources Inc., BC MMCM #29707.

Awmack, H.J. and Yamamura, B.K., 1988: 1988 Summary Report on the Trek 1-6 Claims; BC MMCM Assessment Report #18115.

Bailey, L., Kim, R., Takaichi, M., Logan, J., Crowley, J., Friedman, R., Wall, C., van Straaten, B.I., and Campbell, R., 2025: U-Pb Geochronological Data for Intrusive Rocks near the Schaft Creek and Galore Creek Deposits (Southern Telegraph Creek Area, NTS 104G), Northwestern British Columbia; British Columbia Ministry of Mining and Critical Minerals, British Columbia Geological Survey GeoFile 2025-14, 16 p.

Baknes, M.E., 1994: 1993 Drilling Report on the TREK 1-6 Claims; Assessment report on behalf of Warner Ventures Ltd. BC MMCM Report #23394.

Bernales, S., Chadwick, P., and Guszowaty, E., 2008: 2008 Geological and Geochemical Report on the Trek Property; Assessment Report on behalf of Romios Gold Resources Inc., BC MMCM #30748.

Biczok, J., 2019: Report on the 2018 Summer Exploration Program, Newmont Lake and Trek Claims; Assessment report on behalf of Romios Gold Resources Inc., BC MMCM #38869.

Biczok, J., 2020: Report on the 2019 Summer Exploration Program on the Andrei, Trek and Southwest Claims; Assessment report on behalf of Romios Gold Resources Inc., BC MMCM #39003.

Biczok, J., 2021: Report on the 2021 Summer Exploration Program on the Trek and Andrei Claims; Assessment report on behalf of Romios Gold Resources Inc., BC MMCM #40222.

Biczok, J., 2023: Report on the 2022 Summer Exploration Program on the Trek and Andrei Claims; Assessment report on behalf of Romios Gold Resources Inc., BC MMCM #40611.

Biczok, J., 2025: Report on the 2025 Summer Exploration Program on the Trek and Andrei Claims; Assessment report on behalf of Romios Gold Resources Inc.

Bissig, T., 2010: Alkalic Porphyry Cu-Au Deposits: a BC Specialty; Presentation to the Prospectors and Developers Association of Canada annual convention.

Campbell, R., and van Straaten, B.I., 2025: New Data on Late Triassic to Late Early Jurassic Plutonic Suites in the Northern Golden Triangle Region of Northwest British Columbia; Geological Fieldwork 2024, British Columbia Ministry of Mining and Critical Minerals, British Columbia Geological Survey Paper 2025-01, pp. 49-72.

Caulfield, D.A., 1989: 1989 Summary Report on the TREK 1-6 Claims; Assessment report on behalf of Lorica Resources Ltd., BC MMCM #19479.

Chadwick, P., 2011: 2010 Geological, Geophysical and Geochemical Report on the Trek Property; Assessment Report on behalf of Romios Gold Resources Inc., BC MMCM #32023.

Chadwick, P., and Guszowaty, E., 2009: 2008 Geological and Geochemical Report on the Trek Property; Assessment Report on behalf of Romios Gold Resources Inc., BC MMCM #31505.

Chamberlain, C., Bath, A., Blackwell, J., Cooke, D., Henry, A., Jackson, M., Jago, P., Micko, J., Pass, H., Simpson, K., Tosdal, R., and Zukowski, W., 2007: Towards an Integrated Model for Alkalic Porphyry and Epithermal Deposits in British Columbia; Poster at the Cordilleran Roundup, Vancouver, BC.

Chamberlain, C., 2010: Alkalic porphyry presentations, included in Devine, 2011: Chen, G., Wan, H., Shu, L., Zhang, C., and Keng, C., 2012: An Analysis on Ore-Controlling Conditions and Geological Features of the Cu-W Polymetallic Ore Deposit in the Zhuxi Area of Jingdezhen, Jiangxi Province; Health & Environmental Research Online (HERO), page numbers 3901-3914.

Close, S., and Danz, N., 2012: 2011 Geological, Geophysical and Geochemical Report on the TREK Property; Assessment report on behalf of Romios Gold Resources Inc., BC MMCM #32866.

Danz, N., 2011: Structural Analysis (of the Trek Fault Lineament); Internal PowerPoint presentation for Romios Gold Resources Inc.

Desautels, P., 2011: NI 43-101 Technical Report for the Trek Property, Liard Mining District, British Columbia; Technical report on behalf of Romios Gold Resources Inc.

Devine, F., 2011: Alkalic Porphyry Deposits in British Columbia, Deposit to District Scale Characteristics; Geoscience BC presentation.

Febo, G., Nelson, J., van Stratten, B., Kennedy, L., and Miller, E., 2021: Structural Patterns Mapped at Mesozoic KSM and Galore Creek Cu-Au Porphyry Districts, British Columbia, Reflections of Pre-Porphyry Rifts? Ore Deposit Hub lecture, Dec. 2021.

Folk, P.G., and Spilsbury, W., 1980: Report on Geological Mapping, Magnetometer and Soil Sampling Surveys of SPHAL 7-12, 19-33, KIM 1-10, 38, 40 and 42 SPHAL Fraction; Assessment report on behalf of Teck Explorations (and Silver Standard Mines), BC MMCM # 8424.

Folk, P.G., 1981: Report of Rock Chip Sampling of SPHAL 7-12, 19-33, KIM 1-10, 38, 40 and 42 SPHAL Fraction; Assessment report on behalf of Teck Explorations (and Silver Standard Mines), BC MMCM # 9614.

Francis, K., 2008: Galore Creek Property NI 43-101 Technical Report British Columbia, Canada; Prepared for NovaGold Resources Inc.

Franklin, J.M., Sangster, D.M., and Lydon, J.W., 1981: Volcanic-Associated Massive Sulfide Deposits; in Skinner, B.J., ed., Economic Geology Seventy-fifth Anniversary Volume: Economic Geology Publishing Company, p. 485-627.

Geological Survey of Canada (1957): Stikine River Area, Cassiar District, British Columbia; Geological Survey of Canada Map 9-1957.

Ghaffari, H., Kim, K., Huang, J., Gray J.H., Kinakin, D., Willms, D., Brazier, N., Schmidt, R Hammett, R., 2022: KSM (Kerr-Sulphurets-Mitchell) Prefeasibility Study and Preliminary Economic Assessment; Ni 43-101 Technical Report Prepared for Seabridge Gold.

Gill, R., Kulla, G., Wortman, G., Melnyk, J., and Rogers, D., 2011: Galore Creek Project, British Columbia NI 43-101 Technical Report; Prepared by AMEC for NovaGold Resources Inc.

Grove, E.W., 1987: Geological and Drilling Report and Work Summary, June 1 to September 30, 1987, on the Gulf International Minerals Ltd. McLymont Creek Property, Iskut River Area, Northwestern British Columbia; Assessment Report on behalf of Gulf International Minerals, BC MMCM #16932.

Hallof, P.G., 1965: Report on the Induced Polarization and Resistivity Survey on the Goat and Kim Claim Groups, Sphaler Creek Area, British Columbia; Assessment report for Kennco Explorations (Western) Ltd., BC MMCM #681.

Horrell, B., 2012: Archaeological Overview Assessment: Trek, Dirk and Newmont Lake Areas, Northwestern BC; Report prepared for Romios Gold Resources Inc. by Ecofor Consulting BC Ltd.

Kasper, B. (1989): Geological and Geochemical Report on the Sphaler Creek Project; BC MMCM Assessment Report #19519.

Kasper, B. (1991): 1990 Geological, Geochemical and Geophysical Report on the Sphaler Creek Project; BC MMCM Assessment Report #20820.

Kerr, F.A. (1948): Lower Stikine and Western Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 pages.

Lee, W.S., Peterson, N., and Bailey, L, 2024: Galore Creek: A Modern Synthesis of 60 Years of Knowledge; MDRU Golden Triangle Short Course – AME Roundup 2024.

Logan, J.M. (2005): Alkaline Magmatism and Porphyry Cu-Au Deposits at Galore Creek, Northwestern British Columbia; British Columbia Ministry of Energy and Mines, Paper 2005-1, Geological Fieldwork 2004, p. 137-148.

Logan, J.M., Drobe, J.R., and McClelland, W.C., 2000: Geology of the Forrest Kerr-Mess Creek Area, Northwestern British Columbia; British Columbia Geological Survey Branch, Bulletin 104.

Logan, J.M. and Koyanagi, V.M., (1989): Preliminary Geology and Mineral Deposits of the Galore Creek Area, Northwestern British Columbia (104G/3&4), *in* Geological Fieldwork 1988; British Columbia Ministry of Energy and Mines Paper 1989-1, p. 269-284.

Logan, J.M. and Koyanagi, V.M., (1994): Geology and Mineral Deposits of the Galore Creek Area (104G/3, 4); British Columbia Ministry of Energy and Mines Bulletin 92.

Logan, J.M., Koyanagi, V.M. and Rhys, D.A., (1989): Geology and Mineral Occurrences of the Galore Creek Area (104G/3&4); British Columbia Ministry of Energy and Mines Open File 1989-8, map at 1:50,000 scale.

Logan, J.M., and Mihalynuk, M.G., 2014: Tectonic Controls on Early Mesozoic Paired Alkaline Porphyry Deposit Belts (Cu-Au \pm Ag-Pt-Pd-Mo) Within the Canadian Cordillera; *Economic Geology*, Vol 109, No. 4.

Massey, N.W.D, Alldrick, D.J., and Lefebure, D.V., 1999: Potential for Subaqueous Hot-Spring (Eskay Creek) Deposits in British Columbia; BC Geological Survey Open File 1999-14.

Meinert, L.D., 1993: Igneous Petrogenesis and Skarn Deposits; *In Mineral Deposit Modeling*, GAC Special Paper 40, p 569-583. Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., and Duke, J.M., editors.

Meinert, L.D., 2023: Exploration for Skarn Deposits; Online presentation to the GeoHug group, available on YouTube.

Milne, B.D., 1970: Report on the Sphaler Creek Property; Private report for Silver Standard Mines Ltd., dated October, 1970, Referenced in Awmack, 1991 and Desautels, 2011.

Morris, R.J., 2010: Resource Estimate, Copper Canyon Property; Report prepared by Moose Mountain Technical Services on behalf of Copper Canyon Resources Ltd.

Newberry, R., and Swanson, S.E., 1986: Scheelite Skarn Granitoids: An Evaluation of the Roles of Magmatic Source and Process; *Ore Geology Reviews*, v. 1, p. 57-81.

Nicholson, J.A., 2004: Review of technical Information Proposed Exploration Program and Resource Calculation for the NW Zone, Newmont Lake Gold Project, Northwest British Columbia; Unpublished Report for Romios Gold Resources Inc., and McLymont Mines Inc.

Nicholson, J.A., and Sim, R.C., 2007: Mineral Resource Estimate on the North West Zone, Newmont Lake Property, Iskut River District, NW British Columbia; Report for Romios Gold Resources Inc.

NovaGold Resources Inc., 2008: Galore Creek Property Ni 43-101 Technical Report.

Ray, G.E., Jaramillo, V.A., and Ettlinger, A.D., 1991: The McLymont North West Zone, Northwest British Columbia: A Gold-rich retrograde skarn?; BC Geological Survey Branch, Geological Fieldwork 1990, Paper 1991-1, pages 255-262.

Rayner, G.H., and Ney, C.S., 1964: Report on Geological and Geochemical Surveys, Sphaler Creek Examination, Goat & Kim M.C., Liard M.D.; Assessment report on behalf of Kennco Explorations (Western) Ltd. BC MMCM #565.

Rayner, G.H., 1966: Sphaler Creek; Paper to be presented at C.I.M., Victoria, B.C., October 29th, 1966, Referenced in Desautels, 2011.

Ryan, J., 2021: 2020 Exploration Report on the Trek and Andrei Targets; Internal draft report prepared for Romios Gold Resources Inc.

Sillitoe, R., 2010: Porphyry Copper Systems; Economic Geology, v. 104, No. 1.

Sillitoe, R., and Hedenquist, J., 2025: Are Alkalic Porphyry Deposits Overlain by Advanced Argillic Lithocaps?; Research Article in Economic Geology, September 11, 2025.

Simmons, A., 2006: 2006 Geochemical and Geological Report on the Trek Property; Assessment report on behalf of Romios Gold Resources Inc., BC MMCM #26624.

Souther, J.G., 1972: Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44.

Tournerie, B., and Eadie, T., 2010: Titan-24 DC/IP/MT Survey Geophysical Report, Trek Property Project, British Columbia, Canada; Technical report on behalf of Romios Gold Resources Inc. Appended to Chadwick (2011).